On the heritability of the property $D_\pi$ by subgroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 44-52
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For some set of primes $\pi$, a subgroup $H$ of a finite group $G$ is called a $\pi$-Hall subgroup if all prime divisors of $|H|$ are in $\pi$ and $|G:H|$ has no prime divisors from $\pi$. A group $G$ is said to possess the property $D_\pi$ if it has only one class of conjugate maximal $\pi$-subgroups or, equivalently, the complete analog of Sylow's theorem for Hall $\pi$-subgroups is valid in $G$. We investigate which subgroups of $D_\pi$-groups inherit the property $D_\pi$.
Keywords: Hall subgroup, property $D_\pi$, finite simple group, Sylow's theorem.
@article{TIMM_2011_17_4_a3,
     author = {E. P. Vdovin and N. Ch. Manzaeva and D. O. Revin},
     title = {On the heritability of the property $D_\pi$ by subgroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {44--52},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a3/}
}
TY  - JOUR
AU  - E. P. Vdovin
AU  - N. Ch. Manzaeva
AU  - D. O. Revin
TI  - On the heritability of the property $D_\pi$ by subgroups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 44
EP  - 52
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a3/
LA  - ru
ID  - TIMM_2011_17_4_a3
ER  - 
%0 Journal Article
%A E. P. Vdovin
%A N. Ch. Manzaeva
%A D. O. Revin
%T On the heritability of the property $D_\pi$ by subgroups
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 44-52
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a3/
%G ru
%F TIMM_2011_17_4_a3
E. P. Vdovin; N. Ch. Manzaeva; D. O. Revin. On the heritability of the property $D_\pi$ by subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 44-52. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a3/

[1] J. H. Conway [et al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[2] Carter R. W., Simple groups of Lie type, John Wiley and Sons, London, 1972, 364 pp. | MR | Zbl

[3] Gilotti A. L., “$D_\pi$-property and normal subgroups”, Ann. Mat. Pura Appl. Ser. IV, 148 (1987), 227–235 | DOI | MR | Zbl

[4] Gorenstein D., Lyons R., Solomon R., The classification of the finite simple groups, Mathematical Surveys and Monographs, 40, no. 3, AMS, Providence, RI, 1998, 420 pp. | MR | Zbl

[5] Gross F., “Odd order Hall subgroups of $\mathrm{GL}_n(q)$ and $\mathrm{Sp}_{(2n)}(q)$”, Math. Z., 187:3 (1984), 185–194 | DOI | MR | Zbl

[6] Gross F., “On a conjecture of Philip Hall”, Proc. London Math. Soc. Ser. III, 52:3 (1986), 464–494 | DOI | MR | Zbl

[7] Gross F., “On the existence of Hall subgroups”, J. Algebra, 98:1 (1986), 1–13 | DOI | MR | Zbl

[8] Hall P., “Theorems like Sylows”, Proc. London Math. Soc. Ser. III, 6:22 (1956), 286–304 | DOI | MR | Zbl

[9] Revin D. O., Vdovin E. P., “Hall subgroups of finite groups”, Contemporary Math., 402 (2006), 229–265 | MR

[10] Revin D. O., Vdovin E. P., “On the number of classes of conjugate Hall subgroups in finite simple groups”, J. Algebra, 324:12 (2010), 3614–3652 | DOI | MR | Zbl

[11] Wielandt H., “Entwicklungslinien in der Strukturtheorie der endlichen Gruppen”, Proc. Intern. Congress Math. (Edinburg, 1958), Cambridge Univ. Press, London, 1960, 268–278 | MR

[12] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Izd. 17-e, dop., In-t matematiki SO RAN, Novosibirsk, 2010, 219 pp. http://math.nsc.ru/~alglog/17kt.pdf

[13] Revin D. O., “Svoistvo $D_\pi$ v konechnykh prostykh gruppakh”, Algebra i logika, 47:3 (2008), 364–394 | MR | Zbl