Finitary automorphisms of semisimple groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 312-315
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The structure of groups of finitary automorphisms of semisimple groups is investigated. In particular, it is shown that the group of finitary automorphisms of an arbitrary semisimple group has a faithful finitary permutation representation.
Keywords: finitary automorphism groups, finitary permutation groups, semisimple groups.
@article{TIMM_2011_17_4_a27,
     author = {D. A. Shved},
     title = {Finitary automorphisms of semisimple groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {312--315},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a27/}
}
TY  - JOUR
AU  - D. A. Shved
TI  - Finitary automorphisms of semisimple groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 312
EP  - 315
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a27/
LA  - ru
ID  - TIMM_2011_17_4_a27
ER  - 
%0 Journal Article
%A D. A. Shved
%T Finitary automorphisms of semisimple groups
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 312-315
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a27/
%G ru
%F TIMM_2011_17_4_a27
D. A. Shved. Finitary automorphisms of semisimple groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 312-315. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a27/

[1] Belyaev V. V., Shved D. A., “Finitarnye avtomorfizmy grupp”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 2, 2009, 50–57

[2] Belyaev V. V., “Stroenie periodicheskikh grupp finitarnykh preobrazovanii”, Algebra i logika, 33:4 (1994), 531–551 | MR

[3] Phillips R. E., “Finitary linear groups: a survey”, Finite and Locally Finite Groups (Istanbul, 1994), NATO ASI Ser. Ser. C Math. Phys. Sci., 471, Kluwer Acad. Publ., Dordrecht, 1995, 111–147 | MR

[4] Kurosh A. G., Teoriya grupp, Nauka, M., 1967, 648 pp. | MR | Zbl