On one example of representing the ultrafilter space for an algebra of sets
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 293-311
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Abstract problems on attainability with constraints of asymptotic nature often involve a situation when the class of sequential approximate sequence solutions (which corresponds conceptually to Vargas approach in control theory problems) is insufficient for the reproduction of effects related to the realization of limit states corresponding to the observance of asymptotic constraints. In this situation, it is necessary to use filters or nets in the original space of solutions. In the case of using filters, as easily seen, it is sufficient to take ultrafilters as analogs of Vargas approximate solutions. However, free ultrafilters, which are the most interesting form this point of view variants of ultrafilters, do not admit a constructive description. The situation can be corrected in some cases of using ultrafilters of an algebra of sets, which turns out to be acceptable in some problems of the above type. In this context, classes of measurable spaces with algebras (or, which is practically the same, with semialgebras) of sets are of interest, as they can be used to describe the set of all free ultrafilters. We analyze an example of this kind and discuss some general constructions related to representations of the space of ultrafilters.
Keywords: algebra of sets, ultrafilter.
@article{TIMM_2011_17_4_a26,
     author = {A. G. Chentsov},
     title = {On one example of representing the ultrafilter space for an algebra of sets},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {293--311},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a26/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - On one example of representing the ultrafilter space for an algebra of sets
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 293
EP  - 311
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a26/
LA  - ru
ID  - TIMM_2011_17_4_a26
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T On one example of representing the ultrafilter space for an algebra of sets
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 293-311
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a26/
%G ru
%F TIMM_2011_17_4_a26
A. G. Chentsov. On one example of representing the ultrafilter space for an algebra of sets. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 293-311. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a26/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[2] Daffin R. Dzh., “Beskonechnye programmy”, Lineinye neravenstva i smezhnye voprosy, IL, M., 1959, 263–267

[3] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 351 pp. | MR

[4] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[5] Chentsov A. G., “Finitely additive measures and extensions of abstract control problems”, J. Math. Sci., 133:2, Contemporary Mathematics and its Applications, 17 (2006), 1045–1206 | DOI | MR | Zbl

[6] Chentsov A. G., “Nekotorye konstruktsii asimptoticheskogo analiza, svyazannye s kompaktifikatsiei Stouna–Chekha”, Sovremennaya matematika i ee prilozheniya, 26, AN Gruzii, In-t kibernetiki, 2005, 119–150

[7] Chentsov A. G., Asymptotic attainability, Kluwer Acad. Publ., Dordrecht–Boston–London, 1997, 322 pp. | MR | Zbl

[8] Melentsov A. A., Baidosov V. A., Zmeev G. M., Elementy teorii mery i integrala, UrGU, Sverdlovsk, 1980, 100 pp.

[9] Chentsov A. G., Morina S. I., Extensions and Relaxations, Kluwer Acad. Publ., Dordrecht–Boston–London, 2002, 408 pp. | MR | Zbl

[10] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp. | MR

[11] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005, 402 pp.

[12] Burbaki N., Obschaya topologiya, Nauka, M., 1968, 272 pp. | MR

[13] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[14] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. I, Izd-vo UGTU-UPI, Ekaterinburg, 2008, 388 pp.

[15] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. II, Izd-vo UGTU-UPI, Ekaterinburg, 2010, 541 pp.

[16] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl

[17] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962, 895 pp.

[18] Bastrykov E. S., “O nekotorykh tochkakh rasshireniya Bella schetnogo diskretnogo prostranstva”, Vestn. Udmurt. un-ta. Ser. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 4, 3–6

[19] Gryzlov A. A., Bastrykov E. S., Golovastov R. A., “O tochkakh odnogo bikompaktnogo rasshireniya $N$”, Vestn. Udmurt. un-ta. Ser. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 3, 10–17

[20] Bell M. G., “Compact ccc non-separable spaces of small weight”, Topology Proceedings, 5 (1980), 11–25 | MR