On finite critical lattices. II
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 278-292
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Critical lattices are considered, i.e., lattices without nontrivial endomorphisms and not containing nontrivial proper sublattices without nontrivial endomorphisms. It is proved that there exist $n$-element critical lattices for $n=7$ and $n\geq9$.
Keywords: lattice, critical lattice.
Mots-clés : sublattice, endomorphism
@article{TIMM_2011_17_4_a25,
     author = {O. E. Perminova},
     title = {On finite critical {lattices.~II}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {278--292},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a25/}
}
TY  - JOUR
AU  - O. E. Perminova
TI  - On finite critical lattices. II
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 278
EP  - 292
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a25/
LA  - ru
ID  - TIMM_2011_17_4_a25
ER  - 
%0 Journal Article
%A O. E. Perminova
%T On finite critical lattices. II
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 278-292
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a25/
%G ru
%F TIMM_2011_17_4_a25
O. E. Perminova. On finite critical lattices. II. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 278-292. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a25/

[1] Vazhenin Yu. M., Perminov E. A., “O zhestkikh reshetkakh i grafakh”, Issled. po sovrem. algebre, mezhvuz. sb. st., Mat. zapiski, 2, no. 3, Sverdlovsk, 1979, 3–21 | MR

[2] Perminova O. E., “O konechnykh kriticheskikh reshetkakh”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 2, 2009, 185–193

[3] Grettser G., Obschaya teoriya reshetok, Mir, M., 1982, 456 pp. | MR

[4] Rival I., “Lattices with doubly irreducible elements”, Can. Math. Bull., 17 (1974), 91–95 | DOI | MR | Zbl

[5] A. M. Kutin, A. V. Purgin, M. V. Kevbrin, V. V. Gulnov, “O dvukh zadachakh teorii reshetok”, Mezhdunar. algebraich. konf., posvyasch. pamyati D. K. Fadeeva, tez. dokl., S.-Peterburg, 1997, 231–232

[6] Perminova O. E., Diagrammy semielementnykh i vosmielementnykh reshetok, Kafedra algebry i diskretnoi matematiki UrFU [sait], (data obrascheniya 3.08.2011) URL: http://www.kadm.math.usu.ru/pages.php?id=perminova_papers