Properties of the $C$-compact-open topology on a function space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 258-277
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the $C$-compact-open topology on the set $C(X)$ of all continuous real-valued functions defined on a Tikhonov space $X$. The relations between the $C$-compact-open topology and the compact-open and bounded-open topologies on the set $X$ are studied. We also investigate the cardinal-valued characteristics of the space $C(X)$ equipped with the $C$-compact-open topology, for example, the Suslin number, Lindelöf number, weight, and density.
Keywords: space of continuous functions, set-open topology, compact-open topology, $C$-compact subset, topology of uniform convergence.
@article{TIMM_2011_17_4_a24,
     author = {A. V. Osipov},
     title = {Properties of the $C$-compact-open topology on a~function space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {258--277},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a24/}
}
TY  - JOUR
AU  - A. V. Osipov
TI  - Properties of the $C$-compact-open topology on a function space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 258
EP  - 277
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a24/
LA  - ru
ID  - TIMM_2011_17_4_a24
ER  - 
%0 Journal Article
%A A. V. Osipov
%T Properties of the $C$-compact-open topology on a function space
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 258-277
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a24/
%G ru
%F TIMM_2011_17_4_a24
A. V. Osipov. Properties of the $C$-compact-open topology on a function space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 258-277. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a24/

[1] Nokhrin S. E., Osipov A. V., “K voprosu o sovpadenii mnozhestvenno-otkrytoi i ravnomernoi topologii”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 2, 2009, 177–184

[2] Osipov A. V., “Slabo mnozhestvenno-otkrytaya topologiya”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 2, 2010, 167–176

[3] Engelking R., Obschaya topologiya, Mir, M., 1986, 752 pp. | MR

[4] Arens R., Dugundji J., “Topologies for function spaces”, Pacific J. Math., 1:1 (1951), 5–31 | MR | Zbl

[5] Arhangelskii A. V., “On a class of spaces containing all metric and all locally bicompact spaces”, Soviet Math. Dokl., 4 (1963), 1051–1055

[6] Arhangelskii A. V., Tkachenko M., Topological group and related structures, Atlantis Stud. Math., 1, Atlantis Press, Paris, 2008, 800 pp. | MR

[7] Aull C. E., “Sequences in topological spaces”, Prace Mat., 11 (1968), 329–336 | MR | Zbl

[8] Aull C. E., “Notes on separation by continuous functions”, Indag. Math., 31 (1969), 458–461 | MR

[9] Aull C. E., “Some base axioms for topology involving enumerability”, General Topology and its Relations to Modern Analysis and Algebra, III, Proc. Conf. (Kanpur, 1968), Academia, Prague, 1971, 55–61 | MR

[10] Aull C. E., “On $C$- and $C^*$-embeddings”, Indag. Math., 37 (1975), 26–33 | MR

[11] Aull C. E., “Absolute $C$-embedding in functionally normal spaces and related spaces”, Topology, Colloquia Mathematica Societatis Janos Bolyai, 23, North-Holland, Amsterdam–New York, 1980, 129–136 | MR

[12] Blai R. L., Douwen E. K. van, “Nearly realcompact spaces”, Topology Appl., 47:3 (1992), 209–221 | DOI | MR | Zbl

[13] Blair R. L., Swardson M. A., “Spaces with an Oz Stone–Čech compactification”, Topology Appl., 36:1 (1990), 73–92 | DOI | MR | Zbl

[14] Buchwalter H., “Parties barnés d'un espace topologique complétment rgulier”, Sem. Choquet: 1969/70, Initiation á l'Analyse Fasc. 2, Exp. 14, Secretariat mathematique, Paris, 1970, 15 pp. | MR

[15] Davis S. W., “A cushioning-type weak covering property”, Pacific J. Math., 80:2 (1979), 359–370 | MR | Zbl

[16] Est W. T. van, Freudenthal H., “Trennung durch stetige funktionen in topologischen rdaumen”, Indag. Math., 13 (1951), 359–368 | MR | Zbl

[17] Frolík Z., “Generalizations of compact and Lindelöf spaces”, Czech. Math. J., 9:2 (1959), 172–217 | MR | Zbl

[18] Fox R. H., “On topologies for function spaces”, Bull. Amer. Math. Soc., 51 (1945), 429–432 | DOI | MR | Zbl

[19] Gillman L., Jerison M., Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1960, 300 pp. | MR | Zbl

[20] Gruenhage G., “Generalized metric spaces”, Handbook of set-theoretic topology, eds. K. Kunen, J. E. Vaughan, North-Holland, 1984, 423–501 | MR

[21] Ismail M., Nyikos P., “On spaces in which countably compact sets are closed, and hereditary properties”, Topology Appl., 11:3 (1980), 281–292 | DOI | MR | Zbl

[22] Kundu S., Garg P., “Countability properties of the pseudocompact-open topology on $C(X)$: A comparative study”, Rend. Istit. Mat. Univ. Trieste, 39 (2007), 421–444 | MR | Zbl

[23] Kundu S., Raha A. B., “The bounded-open topology and its relatives”, Rend. Istit. Mat. Univ. Trieste, 27 (1995), 61–77 | MR | Zbl

[24] McCoy R. A., “Countability properties of function spaces”, Rocky Mountain J. Math., 10:4 (1980), 717–730 | DOI | MR | Zbl

[25] McCoy R. A., “Necessary conditions for function spaces to be Lindelöf”, Glasnik Matematicki, 15:35 (1980), 163–168 | MR | Zbl

[26] McCoy R. A., Ntantu I., Topological properties of spaces of continuous functions, Lecture Notes in Mathematics, 1315, Springer-Verlag, Berlin, 1988, 124 pp. | MR | Zbl

[27] Michael E., “$\aleph_0$-spaces”, J. Math. Mech., 15 (1966), 983–1002 | MR | Zbl

[28] Morita K., “Products of normal spaces with metric spaces”, Math. Ann., 154 (1964), 365–382 | DOI | MR | Zbl

[29] Siwiec F., “Generalizations of the first axiom of countability”, Rocky Mountain J. Math., 5 (1975), 1–60 | DOI | MR | Zbl

[30] Steen L. A., Seebach J. A. (Jr.), Counterexamples in topology, 2nd ed., Springer-Verlag, New York, 1978, 244 pp. | MR | Zbl

[31] Swardson M. A., Szeptycki P. J., “When $X^*$ is a $P'$-space?”, Canad. Math. Bull., 39 (1996), 476–485 | DOI | MR | Zbl

[32] Taylor A. E., Lay D. C., Introduction to functional analysis, 2nd ed., John Wiley Sons, New York, 1980, 244 pp. | MR | Zbl

[33] Todd A. R., “Pseudocompact sets, absolutely Warner bounded sets and continuous function spaces”, Arch. Math. (Basel), 56:5 (1991), 474–481 | MR | Zbl

[34] Vaughan J. E., “Countably compact and sequentially compact spaces”, Handbook of set-theoretic topology, K. Kunen, J. Vaughan, Amsterdam, 1984, 569–602 | MR | Zbl