Strongly $(s-2)$-uniform extensions of partial geometries $pG_\alpha(s,t)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 244-257

Voir la notice de l'article provenant de la source Math-Net.Ru

A geometry of rank $2$ is an incidence system $(P,\mathcal B)$, where $P$ is a set of points and $\mathcal B$ is a family of subsets from $P$, which are called blocks. Two points from $P$ are called collinear if they lie in the same block from $\mathcal B$. A pair $(a,B)$ from $(P,\mathcal B)$ is called a flag if the point $a$ belongs to the block $B$ and an antiflag otherwise. A geometry is called $\varphi$-uniform if, for any antiflag $(a,B)$, the number of points in the block $B$ that are collinear to the point $a$ is either $0$ or $\varphi$; it is called strongly $\varphi$-uniform if this number is always $\varphi$. In this paper, we study strongly $(s-2)$-uniform extensions of partial geometries $pG_\alpha(s,t)$.
Keywords: partial geometry, uniform extension.
@article{TIMM_2011_17_4_a23,
     author = {M. S. Nirova},
     title = {Strongly $(s-2)$-uniform extensions of partial geometries $pG_\alpha(s,t)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {244--257},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a23/}
}
TY  - JOUR
AU  - M. S. Nirova
TI  - Strongly $(s-2)$-uniform extensions of partial geometries $pG_\alpha(s,t)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 244
EP  - 257
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a23/
LA  - ru
ID  - TIMM_2011_17_4_a23
ER  - 
%0 Journal Article
%A M. S. Nirova
%T Strongly $(s-2)$-uniform extensions of partial geometries $pG_\alpha(s,t)$
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 244-257
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a23/
%G ru
%F TIMM_2011_17_4_a23
M. S. Nirova. Strongly $(s-2)$-uniform extensions of partial geometries $pG_\alpha(s,t)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 244-257. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a23/