$Aut_0(\Lambda^2)$-symmetrical 4-extensions of the 2-dimensional grid~$\Lambda^2$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 222-243
Voir la notice de l'article provenant de la source Math-Net.Ru
Using an earlier proof by the author and V. I. Trofimov that there are only finitely many $Aut_0(\Lambda^2)$-symmetrical 4-extensions of the 2-dimensional grid $\Lambda^2$, we find all $Aut_0(\Lambda^2)$-symmetrical 4-extensions of grid $\Lambda^2$.
Keywords:
$d$-dimensional grid, symmetrical $q$-extension.
@article{TIMM_2011_17_4_a22,
author = {E. A. Neganova},
title = {$Aut_0(\Lambda^2)$-symmetrical 4-extensions of the 2-dimensional grid~$\Lambda^2$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {222--243},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a22/}
}
TY - JOUR AU - E. A. Neganova TI - $Aut_0(\Lambda^2)$-symmetrical 4-extensions of the 2-dimensional grid~$\Lambda^2$ JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 222 EP - 243 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a22/ LA - ru ID - TIMM_2011_17_4_a22 ER -
E. A. Neganova. $Aut_0(\Lambda^2)$-symmetrical 4-extensions of the 2-dimensional grid~$\Lambda^2$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 222-243. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a22/