$Aut_0(\Lambda^2)$-symmetrical 4-extensions of the 2-dimensional grid~$\Lambda^2$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 222-243

Voir la notice de l'article provenant de la source Math-Net.Ru

Using an earlier proof by the author and V. I. Trofimov that there are only finitely many $Aut_0(\Lambda^2)$-symmetrical 4-extensions of the 2-dimensional grid $\Lambda^2$, we find all $Aut_0(\Lambda^2)$-symmetrical 4-extensions of grid $\Lambda^2$.
Keywords: $d$-dimensional grid, symmetrical $q$-extension.
@article{TIMM_2011_17_4_a22,
     author = {E. A. Neganova},
     title = {$Aut_0(\Lambda^2)$-symmetrical 4-extensions of the 2-dimensional grid~$\Lambda^2$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {222--243},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a22/}
}
TY  - JOUR
AU  - E. A. Neganova
TI  - $Aut_0(\Lambda^2)$-symmetrical 4-extensions of the 2-dimensional grid~$\Lambda^2$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 222
EP  - 243
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a22/
LA  - ru
ID  - TIMM_2011_17_4_a22
ER  - 
%0 Journal Article
%A E. A. Neganova
%T $Aut_0(\Lambda^2)$-symmetrical 4-extensions of the 2-dimensional grid~$\Lambda^2$
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 222-243
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a22/
%G ru
%F TIMM_2011_17_4_a22
E. A. Neganova. $Aut_0(\Lambda^2)$-symmetrical 4-extensions of the 2-dimensional grid~$\Lambda^2$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 222-243. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a22/