On automorphisms of a strongly regular graph with parameters $(210,95,40,45)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 199-208
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Possible orders of automorphisms of a strongly regular graph with parameters $(210,95,40,45)$ and the structure of fixed-point subgraphs of these automorphisms are found.
Keywords: strongly regular graph
Mots-clés : automorphism.
@article{TIMM_2011_17_4_a20,
     author = {A. A. Makhnev and N. V. Chuksina},
     title = {On automorphisms of a~strongly regular graph with parameters $(210,95,40,45)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {199--208},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a20/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - N. V. Chuksina
TI  - On automorphisms of a strongly regular graph with parameters $(210,95,40,45)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 199
EP  - 208
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a20/
LA  - ru
ID  - TIMM_2011_17_4_a20
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A N. V. Chuksina
%T On automorphisms of a strongly regular graph with parameters $(210,95,40,45)$
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 199-208
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a20/
%G ru
%F TIMM_2011_17_4_a20
A. A. Makhnev; N. V. Chuksina. On automorphisms of a strongly regular graph with parameters $(210,95,40,45)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 199-208. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a20/

[1] Makhnev A. A., “O grafakh, okrestnosti vershin kotorykh silno regulyarny s $k=2\mu$”, Mat. sb., 191:7 (2000), 89–104 | MR | Zbl

[2] Makhnev A. A., Chuksina N. V., “Ob avtomorfizmakh silno regulyarnogo grafa s parametrami $(95,40,12,20)$”, Vladikavkaz. mat. zhurn., 11:4 (2009), 44–58 | MR

[3] Brouwer A. E., Haemers W. H., “The Gewirtz graph: an exercize in the theory of graph spectra”, Europ. J. Comb., 14:5 (1993), 397–407 | DOI | MR | Zbl

[4] Makhnev A. A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskr. analiz i issled. operatsi, 3:3 (1996), 71–83 | MR | Zbl

[5] Cameron P., Permutation Groups, London Math. Soc. Student Texts, 45, Cambridge Univ. Press, Cambridge, 1999, 220 pp. | MR | Zbl

[6] Gavrilyuk A. L., Makhnev A. A., “Ob avtomorfizmakh distantsionno regulyarnogo grafa s massivom peresechenii $\{56,45,1;1,9,56\}$”, Dokl. AN, 432:5 (2010), 512–515

[7] Behbahani M., Lam C., “Strongly regular graphs with nontrivial automorphisms”, Discrete Math., 311:2–3 (2011), 132–144 | DOI | MR | Zbl