Finite groups with decomposable cofactors of maximal subgroups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 181-188
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A finite group with a nilpotent $\pi$-Hall subgroup and $\pi$-decomposable cofactors of maximal subgroups is studied. It is established that the quotient of this group by the Fitting subgroup is $\pi$-decomposable, which implies that a finite group with nilpotent cofactors of maximal subgroups is metanilpotent.
Keywords: finite group, maximal subgroup, cofactor.
Mots-clés : $p$-solvable group
@article{TIMM_2011_17_4_a18,
     author = {I. V. Lemeshev and V. S. Monakhov},
     title = {Finite groups with decomposable cofactors of maximal subgroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {181--188},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a18/}
}
TY  - JOUR
AU  - I. V. Lemeshev
AU  - V. S. Monakhov
TI  - Finite groups with decomposable cofactors of maximal subgroups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 181
EP  - 188
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a18/
LA  - ru
ID  - TIMM_2011_17_4_a18
ER  - 
%0 Journal Article
%A I. V. Lemeshev
%A V. S. Monakhov
%T Finite groups with decomposable cofactors of maximal subgroups
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 181-188
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a18/
%G ru
%F TIMM_2011_17_4_a18
I. V. Lemeshev; V. S. Monakhov. Finite groups with decomposable cofactors of maximal subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 181-188. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a18/

[1] Monakhov V. S., Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheish. shk., Minsk, 2006, 207 pp.

[2] Shemetkov L. A., Formatsii konechnykh grupp, Nauka, Moskva, 1978, 272 pp. | MR | Zbl

[3] Berkovich Ya. G., “Konechnye gruppy s bolshimi yadrami maksimalnykh podgrupp”, Sib. mat. zhurn., 9:2 (1968), 243–248

[4] Evtukhova S. M., Monakhov V. S., “O konechnykh gruppakh so sverkhrazreshimymi kofaktorami podgrupp”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk, 2008, no. 4, 53–57 | MR

[5] Rusakov S. A., “O gruppakh s maksimalnymi podgruppami dannogo vida”, Izv. AN BSSR. Ser. fiz.-mat. nauk, 1968, no. 1, 49–53 | MR | Zbl

[6] Vedernikov V. A., “O $\pi$-svoistvakh konechnykh grupp”, Arifmeticheskoe i podgruppovoe stroenie konechnykh grupp, Nauka i tekhnika, Minsk, 1986, 13–19 | MR

[7] Monakhov V. S., Shpyrko O. A., “O nilpotentnoi $\pi$-dline konechnoi $\pi$-razreshimoi gruppy”, Diskret. matematika, 13:3 (2001), 145–152 | MR | Zbl

[8] Huppert B., Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967, 793 pp. | MR | Zbl

[9] Dixon J., Poland J., Rhemtula A., “A generalization of Hamiltonian and nilpotent groups”, Math. Z., 112 (1969), 335–339 | DOI | MR | Zbl