Finite groups with decomposable cofactors of maximal subgroups
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 181-188
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A finite group with a nilpotent $\pi$-Hall subgroup and $\pi$-decomposable cofactors of maximal subgroups is studied. It is established that the quotient of this group by the Fitting subgroup is $\pi$-decomposable, which implies that a finite group with nilpotent cofactors of maximal subgroups is metanilpotent.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
finite group, maximal subgroup, cofactor.
Mots-clés : $p$-solvable group
                    
                  
                
                
                Mots-clés : $p$-solvable group
@article{TIMM_2011_17_4_a18,
     author = {I. V. Lemeshev and V. S. Monakhov},
     title = {Finite groups with decomposable cofactors of maximal subgroups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {181--188},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a18/}
}
                      
                      
                    TY - JOUR AU - I. V. Lemeshev AU - V. S. Monakhov TI - Finite groups with decomposable cofactors of maximal subgroups JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 181 EP - 188 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a18/ LA - ru ID - TIMM_2011_17_4_a18 ER -
I. V. Lemeshev; V. S. Monakhov. Finite groups with decomposable cofactors of maximal subgroups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 181-188. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a18/