On a subgroup of the Burnside group $B_0(2,5)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 176-180
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $x,y$ be generators of the universal 2-generated finite group of exponent $5$ (the $B_0(2,5)$-group). The structure of its subgroup $G=\langle xy,yx\rangle$ is investigated. It is shown that $|G|=5^{14}$ and the nilpotency class and derived length of $G$ are equal to $6$ and $3$, respectively. The lower and upper central series of $G$ are constructed. It is shown that $G$ is the largest 2-generated group of exponent $5$ and nilpotency class $6$.
Keywords: Burnside problem
Mots-clés : $B_0(2,5)$-group.
@article{TIMM_2011_17_4_a17,
     author = {A. A. Kuznetsov},
     title = {On a~subgroup of the {Burnside} group $B_0(2,5)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {176--180},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a17/}
}
TY  - JOUR
AU  - A. A. Kuznetsov
TI  - On a subgroup of the Burnside group $B_0(2,5)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 176
EP  - 180
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a17/
LA  - ru
ID  - TIMM_2011_17_4_a17
ER  - 
%0 Journal Article
%A A. A. Kuznetsov
%T On a subgroup of the Burnside group $B_0(2,5)$
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 176-180
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a17/
%G ru
%F TIMM_2011_17_4_a17
A. A. Kuznetsov. On a subgroup of the Burnside group $B_0(2,5)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 176-180. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a17/

[1] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975, 336 pp. | MR | Zbl

[2] Vaughan Lee M., The restricted Burnside problem, Clarendon Press, New York, 1993, 256 pp. | MR | Zbl

[3] Sims C., Computation with finitely presented groups, Cambridge University Press, Cambridge, 1994, 604 pp. | MR

[4] Holt D., Eick B., O'Brien E., Handbook of computational group theory, Chapman Hall/CRC Press, Boca Raton, 2005, 514 pp. | MR | Zbl

[5] Kostrikin A. I., “Reshenie oslablennoi problemy Bernsaida dlya pokazatelya 5”, Izv. AN SSSR. Ser. mat., 19:3 (1955), 233–244 | MR | Zbl

[6] Havas G., Wall G., Wamsley J., “The two generator restricted Burnside group of exponent five”, Bull. Austral. Math. Soc., 10 (1974), 459–470 | DOI | MR | Zbl

[7] Kuznetsov A. A., Shlëpkin A. K., “Sravnitelnyi analiz bernsaidovykh grupp $B(2,5)$ i $B_0(2,5)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15, no. 2, 2009, 125–132

[8] Kuznetsov A. A., Shlëpkin A. K., “O razlichii bernsaidovykh grupp $B(2,5)$ i $B_0(2,5)$”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 2, 2010, 133–138

[9] Sims C., “The Knuth–Bendix procedure for strings as a substitute for coset enumeration”, J. Symbolic Comput., 12:4–5 (1991), 439–442 | DOI | MR | Zbl