On a~subgroup of the Burnside group $B_0(2,5)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 176-180

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $x,y$ be generators of the universal 2-generated finite group of exponent $5$ (the $B_0(2,5)$-group). The structure of its subgroup $G=\langle xy,yx\rangle$ is investigated. It is shown that $|G|=5^{14}$ and the nilpotency class and derived length of $G$ are equal to $6$ and $3$, respectively. The lower and upper central series of $G$ are constructed. It is shown that $G$ is the largest 2-generated group of exponent $5$ and nilpotency class $6$.
Keywords: Burnside problem
Mots-clés : $B_0(2,5)$-group.
@article{TIMM_2011_17_4_a17,
     author = {A. A. Kuznetsov},
     title = {On a~subgroup of the {Burnside} group $B_0(2,5)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {176--180},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a17/}
}
TY  - JOUR
AU  - A. A. Kuznetsov
TI  - On a~subgroup of the Burnside group $B_0(2,5)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 176
EP  - 180
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a17/
LA  - ru
ID  - TIMM_2011_17_4_a17
ER  - 
%0 Journal Article
%A A. A. Kuznetsov
%T On a~subgroup of the Burnside group $B_0(2,5)$
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 176-180
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a17/
%G ru
%F TIMM_2011_17_4_a17
A. A. Kuznetsov. On a~subgroup of the Burnside group $B_0(2,5)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 176-180. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a17/