Uniqueness of knot roots in $F\times I$ and prime decompositions of virtual knots
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 160-175
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce four types of reduction on the set of knots in thickened surfaces, i.e., in three-dimensional manifolds of the form $F\times I$, where $F$ is a closed orientable surface and $I=[0,1]$. It is proved that the process of applying these reductions to an arbitrary knot in a thickened surface is always finite. The resulting set of knots in thickened surfaces depends on the initial knot only up to the removal of trivial knots in thickened spheres. Reductions of knots in thickened surfaces induce the operation of connected summation of virtual knots. It is proved that every virtual knot can be decomposed into a connected sum of several prime or trivial virtual knots and the prime summands of the decomposition are defined uniquely.
Keywords:
virtual knot, root theory, connected sum, thickened surface.
@article{TIMM_2011_17_4_a16,
author = {F. G. Korablev},
title = {Uniqueness of knot roots in $F\times I$ and prime decompositions of virtual knots},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {160--175},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a16/}
}
TY - JOUR AU - F. G. Korablev TI - Uniqueness of knot roots in $F\times I$ and prime decompositions of virtual knots JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 160 EP - 175 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a16/ LA - ru ID - TIMM_2011_17_4_a16 ER -
F. G. Korablev. Uniqueness of knot roots in $F\times I$ and prime decompositions of virtual knots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 160-175. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a16/