Voir la notice du chapitre de livre
@article{TIMM_2011_17_4_a16,
author = {F. G. Korablev},
title = {Uniqueness of knot roots in $F\times I$ and prime decompositions of virtual knots},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {160--175},
year = {2011},
volume = {17},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a16/}
}
F. G. Korablev. Uniqueness of knot roots in $F\times I$ and prime decompositions of virtual knots. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 160-175. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a16/
[1] Carter J. S., Kamada S., Saito M., “Stable equivalence of knots on surfaces and virtual knot cobordisms”, J. Knot Theory Ramifications, 11 (2002), 311–322 | DOI | Zbl
[2] Hog-Angelony C., Matveev S., “Roots in 3-manifold topology”, Geometry and Topology Monograph, 14 (2008), 295–319 | DOI
[3] Kishino T., Satoh S., “A note on non-classical virtual knots”, J. Knot Theory Ramifications, 13:7 (2004), 845–856 | DOI | Zbl
[4] Kuperberg G., “What is a virtual link?”, Algebraic and Geometric Topology, 3 (2003), 587–591 | DOI | Zbl
[5] Miyazaki K., “Conjugation and prime decomposition of knots in closed, oriented 3-manifolds”, Trans. Amer. Math. Soc., 313 (1989), 785–804 | Zbl
[6] Kauffman L., Manturov V. O., “Virtualnye uzly i zatsepleniya”, Tr. MIRAN, 252, 2006, 114–133 | MR
[7] Matveev S. V., “Razlozhenie gomologicheski trivialnykh uzlov v $F\times I$”, Dokl. AN, 433:1 (2010), 13–15 | Zbl