On finite tetraprimary groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 142-159
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Chief factors of commutants of finite groups whose prime graph is disconnected and has exactly four vertices are described. As a corollary, finite simple groups recognizable by prime graph with exactly four vertices are determined.
Keywords: finite group, tetraprimary group, prime graph, recognition by prime graph.
@article{TIMM_2011_17_4_a15,
     author = {A. S. Kondrat'ev and I. V. Khramtsov},
     title = {On finite tetraprimary groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {142--159},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a15/}
}
TY  - JOUR
AU  - A. S. Kondrat'ev
AU  - I. V. Khramtsov
TI  - On finite tetraprimary groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 142
EP  - 159
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a15/
LA  - ru
ID  - TIMM_2011_17_4_a15
ER  - 
%0 Journal Article
%A A. S. Kondrat'ev
%A I. V. Khramtsov
%T On finite tetraprimary groups
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 142-159
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a15/
%G ru
%F TIMM_2011_17_4_a15
A. S. Kondrat'ev; I. V. Khramtsov. On finite tetraprimary groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 142-159. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a15/

[1] Vasilev A. V., Grechkoseeva M. A., Mazurov V. D., “Kharakterizatsiya konechnykh prostykh grupp spektrom i poryadkom”, Algebra i logika, 48:6 (2009), 658–728 | MR

[2] Dolfi S., Dzhabara E., Lyuchido M. S., “C55-gruppy”, Sib. mat. zhurn., 45:6 (2004), 1285–1298 | MR | Zbl

[3] Zavarnitsin A. V., “O raspoznavanii konechnykh prostykh grupp po grafu prostykh chisel”, Algebra i logika, 45:4 (2006), 390–408 | MR | Zbl

[4] Kondratev A. S., “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Mat. sb., 180:6 (1989), 787–797 | MR | Zbl

[5] Kondratev A. S., Khramtsov I. V., “O konechnykh triprimarnykh gruppakh”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 3, 2010, 150–158

[6] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Izd. 15-e, In-t matematiki SO RAN, Novosibirsk, 2002, 172 pp. | MR

[7] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969, 668 pp. | MR

[8] Mazurov V. D., “Kharakterizatsiya konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36:1 (1997), 37–53 | MR | Zbl

[9] Mazurov V. D., “Gruppy s zadannym spektrom”, Izv. Ural. gos. un-ta. Matematika i mekhanika, 2005, no. 36(7), 119–138 | MR | Zbl

[10] Khosravi A., Khosravi B., “Kvaziraspoznavanie prostoi gruppy $^2G_2(q)$ po grafu prostykh chisel”, Sib. mat. zhurn., 48:3 (2007), 707–716 | MR | Zbl

[11] Khosravi A., Khosravi B., “2-raspoznavaemost $PSL(2,p^2)$ po grafu prostykh chisel”, Sib. mat. zhurn., 49:4 (2008), 934–944 | MR | Zbl

[12] C. Jansen [et. al.], An atlas of Brauer characters, Clarendon Press, Oxford, 1995, 327 pp. | MR | Zbl

[13] Arad Z., Herford W., “Classification of finite groups with a $CC$-subgroup”, Comm. Algebra, 32:6 (2004), 2087–2098 | DOI | MR | Zbl

[14] Aschbacher M., Finite group theory, Cambridge Univ. Press, Cambridge, 1986, 274 pp. | MR | Zbl

[15] J. H. Conway [et. al., Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[16] Bugeaud Y., Cao Z., Mignotte M., “On simple $K_4$-groups”, J. Algebra, 241:2 (2001), 658–668 | DOI | MR | Zbl

[17] Burkhardt R., “Die Zerlegungsmatrizen der Gruppen $PSL(2,p^f)$-groups”, J. Algebra, 40:1 (1976), 75–96 | DOI | MR | Zbl

[18] Fleischmann P., Lempken W., Tiep P. H., “Finite $p'$-semiregular groups”, J. Algebra, 188:2 (1997), 547–579 | DOI | MR | Zbl

[19] Guralnik R. M., Tiep P. H., “Finite simple unisingular groups of Lie type”, J. Group Theory, 6:3 (2003), 271–310 | DOI | MR

[20] Hagie M., “The prime graph of a sporadic simple group”, Comm. Algebra, 31:9 (2003), 4405–4424 | DOI | MR | Zbl

[21] Herzog M., “On finite simple groups of order divisible by three primes only”, J. Algebra, 10:3 (1968), 383–388 | DOI | MR | Zbl

[22] Higman G., Odd characterizations of finite simple groups: lecture notes, University Michigan, Michigan, 1968, 77 pp.

[23] Holt D. F., Plesken W., “$A_5$-invariant 2-groups with no trivial sections”, Quart. J. Math. Oxford Ser. 2, 37:145 (1986), 39–47 | DOI | MR | Zbl

[24] Huppert B., Endliche Gruppen, v. I, Springer-Verlag, Berlin, 1967, 793 pp. | MR | Zbl

[25] Huppert B., Blackburn N., Finite groups, v. II, Springer-Verlag, Berlin, 1982, 531 pp. | MR | Zbl

[26] Huppert B., Lempken W., “Simple groups of order divisible by at most four primes”, Problems in Algebra, Proc. F. Scorina Gomel State University, 3(16), 2000, 64–75 | Zbl

[27] Khosravi B., “$n$-recognition by prime graph of the simple group $PSL(2,q)$”, J. Algebra Appl., 7:6 (2008), 735–748 | DOI | MR | Zbl

[28] Khosravi B., Amiri S. S. S., “Groups with the same prime graph as $L_2(q)$ where $q=p^\alpha100$”, Hadronic J., 30:3 (2007), 343–354 | MR | Zbl

[29] Khosravi Bahman, Khosravi Behnam, Khosravi Behrooz, “On the prime graph of $PSL(2,p)$ where $p>3$ is a prime number”, Acta Math. Hungar., 116:4 (2007), 295–307 | DOI | MR | Zbl

[30] Khosravi Bahnam, Khosravi Behnam, Khosravi Behrooz, “Groups with the same prime graph as a CIT simple group”, Houston J. Math., 33:4 (2007), 967–977, (electronic) | MR | Zbl

[31] Kondratiev A. S., “Finite linear groups of small degree. II”, Commun. Algebra, 29:9 (2001), 4103–4123 | DOI | MR | Zbl

[32] Lucido M. S., “Prime graph components of finite almost simple groups”, Rend. Sem. Mat. Univ. Padova, 102 (1999), 1–22 ; “Addendum”, Rend. Sem. Mat. Univ. Padova, 107 (2002), 189–190 | MR | Zbl | MR | Zbl

[33] Martineau P., “On representations of the Suzuki groups over fields of odd characteristic”, J. London Math. Soc. (2), 6 (1972), 153–160 | DOI | MR | Zbl

[34] Martineau R. P., “On 2-modular representations of the Suzuki groups”, Amer. J. Math., 94 (1972), 55–72 | DOI | MR | Zbl

[35] Prince A. R., “On 2-groups admitting $A_5$ or $A_6$ with an element of order 5 acting fixed point freely”, J. Algebra, 49:2 (1977), 374–386 | DOI | MR | Zbl

[36] Prince A. R., “An analogue of Maschke's theorem for certain representations of $A_6$ over $GF(2)$”, Proc. Roy. Soc. Edinburgh Sect. A, 91:3–4 (1982), 175–177 | DOI | MR | Zbl

[37] Shi W. J., “On simple $K_4$-groups”, Chinese Science Bull., 1991, no. 36(17), 1281–1283

[38] Stewart W. B., “Groups having strongly self-centralizing 3-centralizers”, Proc. London Math. Soc., 426:4 (1973), 653–680 | DOI | MR

[39] Suzuki M., “Finite groups with nilpotent centralizer”, Trans. Amer. Math. Soc., 99 (1961), 425–470 | DOI | MR | Zbl

[40] The GAP Group, GAP – Groups, Algorithms, and Programming, Ver. 4.4.12, 2008 URL: http://www.gap-system.org

[41] Williams J. S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[42] White D. L., “The 2-Decomposition numbers of $Sp(4,q)$, $q$ odd”, J. Algebra, 131:2 (1990), 703–725 | DOI | MR | Zbl

[43] Zhang L. C., Shi W. J., “$OD$-Characterization of simple $K_4$-groups”, Algebra Colloquium, 16:2 (2009), 275–282 | MR | Zbl

[44] Zurek G., “Über $A_5$-invariante 2-Gruppen”, Mitt. Math. Sem. Giessen, 155 (1982), 92 | MR | Zbl