Elementary nets in linear groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 134-141
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For an elementary net (a net without diagonal) of additive subgroups of an arbitrary commutative ring, we define a derivative net, the closure of the net, and a net associated with the elementary group. A factorization of the elementary group is presented and used to construct an example of a closed (admissible) net that cannot completed to the (complete) net.
Mots-clés : net, net group, transvection.
Keywords: elementary net, closed net, elementary group
@article{TIMM_2011_17_4_a14,
     author = {V. A. Koibaev},
     title = {Elementary nets in linear groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {134--141},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a14/}
}
TY  - JOUR
AU  - V. A. Koibaev
TI  - Elementary nets in linear groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 134
EP  - 141
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a14/
LA  - ru
ID  - TIMM_2011_17_4_a14
ER  - 
%0 Journal Article
%A V. A. Koibaev
%T Elementary nets in linear groups
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 134-141
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a14/
%G ru
%F TIMM_2011_17_4_a14
V. A. Koibaev. Elementary nets in linear groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 134-141. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a14/

[1] Borevich Z. I., “O podgruppakh lineinykh grupp, bogatykh transvektsiyami”, Zap. nauch. seminarov LOMI, 75, 1978, 22–31 | MR | Zbl

[2] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, Nauka, M., 1982, 288 pp. | MR | Zbl

[3] Levchuk V .M., “Zamechanie k teoreme L. Diksona”, Algebra i logika, 22:5 (1983), 504–517 | MR | Zbl

[4] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, Izd. 17-e, dop., In-t matematiki SO RAN, Novosibirsk, 2010, 219 pp. URL: http://math.nsc.ru/~alglog/17kt.pdf

[5] Koibaev V. A., “Seti, assotsiirovannye s elementarnymi setyami”, Vladikavkaz. mat. zhurn., 12:4 (2010), 39–43 | MR | Zbl