Elementary nets in linear groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 134-141

Voir la notice de l'article provenant de la source Math-Net.Ru

For an elementary net (a net without diagonal) of additive subgroups of an arbitrary commutative ring, we define a derivative net, the closure of the net, and a net associated with the elementary group. A factorization of the elementary group is presented and used to construct an example of a closed (admissible) net that cannot completed to the (complete) net.
Mots-clés : net, net group, transvection.
Keywords: elementary net, closed net, elementary group
@article{TIMM_2011_17_4_a14,
     author = {V. A. Koibaev},
     title = {Elementary nets in linear groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {134--141},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a14/}
}
TY  - JOUR
AU  - V. A. Koibaev
TI  - Elementary nets in linear groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 134
EP  - 141
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a14/
LA  - ru
ID  - TIMM_2011_17_4_a14
ER  - 
%0 Journal Article
%A V. A. Koibaev
%T Elementary nets in linear groups
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 134-141
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a14/
%G ru
%F TIMM_2011_17_4_a14
V. A. Koibaev. Elementary nets in linear groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 134-141. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a14/