Enhanced simulated annealing in the vehicle routing problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 121-125
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The vehicle routing problem (VRP) is to find routes for a fleet of vehicles located at a central depot and for several distant customers. This problem is NP-hard because it can be seen as a merge of the travelling salesman problem and the bin packing problem. In this paper we describe an enhanced simulated annealing approach and an algorithm for the VRP based on this approach. We present computational results of this algorithm on benchmark instances of the VRP.
Keywords: vehicle routing problem, simulated annealing, metaheuristic.
@article{TIMM_2011_17_4_a12,
     author = {A. V. Ipatov},
     title = {Enhanced simulated annealing in the vehicle routing problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {121--125},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a12/}
}
TY  - JOUR
AU  - A. V. Ipatov
TI  - Enhanced simulated annealing in the vehicle routing problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 121
EP  - 125
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a12/
LA  - ru
ID  - TIMM_2011_17_4_a12
ER  - 
%0 Journal Article
%A A. V. Ipatov
%T Enhanced simulated annealing in the vehicle routing problem
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 121-125
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a12/
%G ru
%F TIMM_2011_17_4_a12
A. V. Ipatov. Enhanced simulated annealing in the vehicle routing problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 121-125. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a12/

[1] J. Cordeau, M. Gendreau, A. Hertz, G. Laporte, J. Sormany, “New heuristics for the vehicle routing problem”, Logistics systems: Design and optimization, Springer, New York, 2005, 279–297 | Zbl

[2] Gendreau M., Laporte G., Potvin J.-Y., “Metaheuristics for the capacitated VRP”, The Vehicle Routing Problem, SIAM Monog. Discrete Math. Appl., Philadelphia, 2002, 129–154 | MR | Zbl

[3] Ipatov A. V., “Reshenie zadachi marshrutizatsii transporta metodom imitatsii otzhiga”, Problemy teoret. i prikl. matematiki, tr. 40-i region. molodezh. konf., UrO RAN, Ekaterinburg, 2009, 290–294

[4] Ipatov A. V., “Modifitsirovannyi metod imitatsii otzhiga v zadache CMST”, Informats. byulleten Assotsiatsii mat. programmirovaniya, 12, UrO RAN, Ekaterinburg, 2011, 182–183

[5] Ipatov A. V., “Postroenie minimalnogo ostova s ogranichennoi propusknoi sposobnostyu metodom imitatsii otzhiga”, Izv. Irkut. gos. un-ta. Matematika, 4:2 (2011), 114–123

[6] Clarke G., Wright J. W., “Scheduling of vehicles from a central depot to a number of delivery points”, Oper. Res., 12 (1964), 568–581 | DOI

[7] The VRP Web, URL: , (data obrascheniya: 11.11.2010) http://neo.lcc.uma.es/radi-aeb/WebVRP

[8] Osman I. H., “Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem”, Ann. Oper. Res., 41 (1993), 421–451 | DOI | Zbl

[9] Bullnheimer B., Hartl R. F., Strauss C., “An improved ant system algorithm for the vehicle routing problem”, Ann. Oper. Res., 89 (1999), 319–328 | DOI | MR | Zbl