Voir la notice du chapitre de livre
@article{TIMM_2011_17_4_a11,
author = {N. D. Zyulyarkina},
title = {On the commutation graph of cyclic $TI$-subgroups in linear groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {114--120},
year = {2011},
volume = {17},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a11/}
}
N. D. Zyulyarkina. On the commutation graph of cyclic $TI$-subgroups in linear groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 114-120. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a11/
[1] Makhnev A. A., “$TI$-podgruppy v gruppakh tipa kharakteristiki 2”, Mat. sb., 127(169):2 (1985), 239–244 | MR | Zbl
[2] Zyulyarkina N. D., Makhnev A. A., “Plotno vlozhennye podgruppy s abelevym sliyaniem”, Trudy Instituta matematiki i mekhaniki UrO RAN, 2, 1992, 19–26 | MR | Zbl
[3] Zyulyarkina N. D., Makhnev A. A., “Tsiklicheskie $TI$-podgruppy poryadka 4 v isklyuchitelnykh gruppakh Shevalle”, Trudy Instituta matematiki i mekhaniki UrO RAN, 3, 1995, 41–49 | MR | Zbl
[4] Zyulyarkina N. D., “Tsiklicheskie $TI$-podgruppy poryadka 4 v klassicheskikh gruppakh Shevalle nechetnoi kharakteristiki”, Voprosy algebry i logiki, Tr. IM SO RAN, 30, 1996, 89–110 | Zbl
[5] Harris M. E., “Finite groups containing an intrinsic 2-component of Chevalley type over field of odd order”, Trans. Amer. Math. Soc., 272:1 (1982), 1–65 | MR | Zbl
[6] Hochheim Y., Timmesfeld F., “A note on $TI$-subgroups”, Arch. Math., 51:1 (1988), 97–103 | DOI | MR | Zbl
[7] Makhnev A. A., “Teorema reduktsii dlya $TI$-podgrupp”, Izv. AN SSSR. Ser. mat., 55:2 (1991), 303–317 | MR | Zbl
[8] Suzuki M., “Finite groups of even order in which Sylow 2-groups are independent”, Ann. Math., 80:1 (1964), 58–77 | DOI | MR | Zbl