On the commutation graph of cyclic $TI$-subgroups in linear groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 114-120
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the commutation graph $\Gamma (A)$ of a cyclic $TI$-subgroup $A$ of order 4 in a finite group $G$ with quasisimple generalized Fitting subgroup $F^*(G)$. It is proved that, if $F^*(G)$ is a linear group, then the graph $\Gamma (A)$ is either a coclique or an edge-regular but not coedge-regular graph.
Keywords: finite group, cyclic $TI$-subgroup, commutation graph.
@article{TIMM_2011_17_4_a11,
     author = {N. D. Zyulyarkina},
     title = {On the commutation graph of cyclic $TI$-subgroups in linear groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {114--120},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a11/}
}
TY  - JOUR
AU  - N. D. Zyulyarkina
TI  - On the commutation graph of cyclic $TI$-subgroups in linear groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 114
EP  - 120
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a11/
LA  - ru
ID  - TIMM_2011_17_4_a11
ER  - 
%0 Journal Article
%A N. D. Zyulyarkina
%T On the commutation graph of cyclic $TI$-subgroups in linear groups
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 114-120
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a11/
%G ru
%F TIMM_2011_17_4_a11
N. D. Zyulyarkina. On the commutation graph of cyclic $TI$-subgroups in linear groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 114-120. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a11/

[1] Makhnev A. A., “$TI$-podgruppy v gruppakh tipa kharakteristiki 2”, Mat. sb., 127(169):2 (1985), 239–244 | MR | Zbl

[2] Zyulyarkina N. D., Makhnev A. A., “Plotno vlozhennye podgruppy s abelevym sliyaniem”, Trudy Instituta matematiki i mekhaniki UrO RAN, 2, 1992, 19–26 | MR | Zbl

[3] Zyulyarkina N. D., Makhnev A. A., “Tsiklicheskie $TI$-podgruppy poryadka 4 v isklyuchitelnykh gruppakh Shevalle”, Trudy Instituta matematiki i mekhaniki UrO RAN, 3, 1995, 41–49 | MR | Zbl

[4] Zyulyarkina N. D., “Tsiklicheskie $TI$-podgruppy poryadka 4 v klassicheskikh gruppakh Shevalle nechetnoi kharakteristiki”, Voprosy algebry i logiki, Tr. IM SO RAN, 30, 1996, 89–110 | Zbl

[5] Harris M. E., “Finite groups containing an intrinsic 2-component of Chevalley type over field of odd order”, Trans. Amer. Math. Soc., 272:1 (1982), 1–65 | MR | Zbl

[6] Hochheim Y., Timmesfeld F., “A note on $TI$-subgroups”, Arch. Math., 51:1 (1988), 97–103 | DOI | MR | Zbl

[7] Makhnev A. A., “Teorema reduktsii dlya $TI$-podgrupp”, Izv. AN SSSR. Ser. mat., 55:2 (1991), 303–317 | MR | Zbl

[8] Suzuki M., “Finite groups of even order in which Sylow 2-groups are independent”, Ann. Math., 80:1 (1964), 58–77 | DOI | MR | Zbl