On the commutation graph of cyclic $TI$-subgroups in linear groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 114-120

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the commutation graph $\Gamma (A)$ of a cyclic $TI$-subgroup $A$ of order 4 in a finite group $G$ with quasisimple generalized Fitting subgroup $F^*(G)$. It is proved that, if $F^*(G)$ is a linear group, then the graph $\Gamma (A)$ is either a coclique or an edge-regular but not coedge-regular graph.
Keywords: finite group, cyclic $TI$-subgroup, commutation graph.
@article{TIMM_2011_17_4_a11,
     author = {N. D. Zyulyarkina},
     title = {On the commutation graph of cyclic $TI$-subgroups in linear groups},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {114--120},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a11/}
}
TY  - JOUR
AU  - N. D. Zyulyarkina
TI  - On the commutation graph of cyclic $TI$-subgroups in linear groups
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 114
EP  - 120
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a11/
LA  - ru
ID  - TIMM_2011_17_4_a11
ER  - 
%0 Journal Article
%A N. D. Zyulyarkina
%T On the commutation graph of cyclic $TI$-subgroups in linear groups
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 114-120
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a11/
%G ru
%F TIMM_2011_17_4_a11
N. D. Zyulyarkina. On the commutation graph of cyclic $TI$-subgroups in linear groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 114-120. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a11/