On the commutation graph of cyclic $TI$-subgroups in linear groups
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 114-120
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the commutation graph $\Gamma (A)$ of a cyclic $TI$-subgroup $A$ of order 4 in a finite group $G$ with quasisimple generalized Fitting subgroup $F^*(G)$. It is proved that, if $F^*(G)$ is a linear group, then the graph $\Gamma (A)$ is either a coclique or an edge-regular but not coedge-regular graph.
Keywords:
finite group, cyclic $TI$-subgroup, commutation graph.
@article{TIMM_2011_17_4_a11,
author = {N. D. Zyulyarkina},
title = {On the commutation graph of cyclic $TI$-subgroups in linear groups},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {114--120},
publisher = {mathdoc},
volume = {17},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a11/}
}
N. D. Zyulyarkina. On the commutation graph of cyclic $TI$-subgroups in linear groups. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 114-120. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a11/