Recognizability by spectrum of simple groups $C_p(2)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 102-113
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that, if $G$ is a finite group that has the same set of element orders as the simple group $C_p(2)$, where $p$ is a prime and $p>3$, then $G/O_2(G)$ is isomorphic to $C_p(2)$.
Keywords: finite simple group, prime graph, spectrum, recognition by spectrum, symplectic group.
@article{TIMM_2011_17_4_a10,
     author = {M. R. Zinov'eva},
     title = {Recognizability by spectrum of simple groups $C_p(2)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {102--113},
     year = {2011},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a10/}
}
TY  - JOUR
AU  - M. R. Zinov'eva
TI  - Recognizability by spectrum of simple groups $C_p(2)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 102
EP  - 113
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a10/
LA  - ru
ID  - TIMM_2011_17_4_a10
ER  - 
%0 Journal Article
%A M. R. Zinov'eva
%T Recognizability by spectrum of simple groups $C_p(2)$
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 102-113
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a10/
%G ru
%F TIMM_2011_17_4_a10
M. R. Zinov'eva. Recognizability by spectrum of simple groups $C_p(2)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 4, pp. 102-113. http://geodesic.mathdoc.fr/item/TIMM_2011_17_4_a10/

[1] Mazurov V. D., “Gruppy s zadannym spektrom”, Izv. Ural. gos. un-ta. Matematika i mekhanika, 2005, no. 36(7), 119–138 | MR | Zbl

[2] Alekseeva O. A., Kondratev A. S., “O raspoznavaemosti gruppy $E_8(q)$ po mnozhestvu poryadkov elementov”, Ukr. mat. zhurn., 54:7 (2002), 998–1003 | MR | Zbl

[3] Vasilev A. V., “O svyazi mezhdu stroeniem konechnoi gruppy i svoistvami ee grafa prostykh chisel”, Sib. mat. zhurn., 46:2 (2005), 315–324 | MR | Zbl

[4] Vasilev A. V., Gorshkov I. B., “O raspoznavanii konechnykh prostykh grupp so svyaznym grafom prostykh chisel”, Sib. mat. zhurn., 50:2 (2009), 292–299 | MR

[5] Mazurov V. D., “Kharakterizatsii konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36:1 (1997), 37–53 | MR | Zbl

[6] Zinoveva M. R., “Raspoznavanie po spektru prostykh grupp $C_p(3)$”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 3, 2010, 88–95

[7] Williams J. S., “Prime graph components of finite groups”, J. Algebra, 69:2 (1981), 487–513 | DOI | MR | Zbl

[8] Kondratev A. S., “O komponentakh grafa prostykh chisel konechnykh prostykh grupp”, Mat. sb., 180:6 (1989), 787–797 | MR | Zbl

[9] Kondratev A. S., Mazurov V. D., “Raspoznavanie znakoperemennykh grupp prostoi stepeni po poryadkam ikh elementov”, Sib. mat. zhurn., 41:2 (2000), 359–369 | MR | Zbl

[10] J. H. Conway [et al.], Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR | Zbl

[11] Vasilev A. V., Vdovin E. P., “Kriterii smezhnosti v grafe prostykh chisel konechnoi prostoi gruppy”, Algebra i logika, 44:6 (2005), 682–725 | MR | Zbl

[12] Zsigmondy K., “Zur Theorie der Potenzreste”, Monatsh. Math. Phys., 3:1 (1892), 265–284 | DOI | MR

[13] Mazurov V. D., “Kharakterizatsii konechnykh grupp mnozhestvami poryadkov ikh elementov”, Algebra i logika, 36:1 (1997), 37–53 | MR | Zbl

[14] Gerono G. C., “Note sur la résolution en nombres entiers et positifs de l'équation $x^m=y^n+1$”, Nouv. Ann. Math. (2), 9 (1870), 469–471

[15] Zinoveva M. R., Shen R., Shi V., “Raspoznavanie prostykh grupp $B_p(3)$ po mnozhestvu poryadkov elementov”, Sib. mat. zhurn., 51:2 (2010), 303–315 | MR

[16] Kleidman P., Liebeck M., The subgroup structure of the finite classical groups, Cambridge Univ. Press, Cambridge, 1990, 303 pp. | MR | Zbl

[17] Vasilev A. V., Vdovin E. P., Kokliki maksimalnogo razmera v grafe prostykh chisel konechnoi prostoi gruppy, preprint No 225, In-t matematiki CO RAN, Novosibirsk, 2009, 34 pp.

[18] Aleeva M. R., “O konechnykh prostykh gruppakh s mnozhestvom poryadkov elementov kak u gruppy Frobeniusa ili dvoinoi gruppy Frobeniusa”, Mat. zametki, 73:3 (2003), 323–339 | MR | Zbl

[19] Lucido M. S., “Prime graph components of finite almost simple groups”, Rend. Sem. Mat. Univ. Padova, 102 (1999), 1–22 | MR | Zbl