Estimates of the Lebesgue function of Fourier sums over trigonometric polynomials orthogonal with a weight not belonging to the spaces $L^r$ $(r>1)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 71-82
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A two-sided pointwise estimate is obtained for the Lebesgue function of Fourier sums with respect to trigonometric polynomials orthogonal with a $2\pi$-periodic weight that differs from the function $1/|\sin(\tau/2)|$ by some factor slowly changing at zero. The weight under consideration does not belong to the space $L^r$ for any $r>1$. A similar result for polynomials orthogonal on the interval $[-1,1]$ is obtained in the form of a corollary.
Mots-clés : Lebesgue function, orthogonal polynomials
Keywords: periodic weight.
@article{TIMM_2011_17_3_a9,
     author = {V. M. Badkov},
     title = {Estimates of the {Lebesgue} function of {Fourier} sums over trigonometric polynomials orthogonal with a~weight not belonging to the spaces $L^r$ $(r>1)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {71--82},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a9/}
}
TY  - JOUR
AU  - V. M. Badkov
TI  - Estimates of the Lebesgue function of Fourier sums over trigonometric polynomials orthogonal with a weight not belonging to the spaces $L^r$ $(r>1)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 71
EP  - 82
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a9/
LA  - ru
ID  - TIMM_2011_17_3_a9
ER  - 
%0 Journal Article
%A V. M. Badkov
%T Estimates of the Lebesgue function of Fourier sums over trigonometric polynomials orthogonal with a weight not belonging to the spaces $L^r$ $(r>1)$
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 71-82
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a9/
%G ru
%F TIMM_2011_17_3_a9
V. M. Badkov. Estimates of the Lebesgue function of Fourier sums over trigonometric polynomials orthogonal with a weight not belonging to the spaces $L^r$ $(r>1)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 71-82. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a9/

[1] Agakhanov S. A., Natanson G. I., “Priblizhenie funktsii summami Fure–Yakobi”, Dokl. AN SSSR, 166:1 (1966), 9–10 | Zbl

[2] Agakhanov S. A., Natanson G. I., “Funktsiya Lebega summ Fure–Yakobi”, Vestn. LGU. Ser. matematika, mekhanika i astronomiya, 1968, no. 1(1), 11–23 | Zbl

[3] Badkov V. M., “Otsenki funktsii Lebega i ostatka ryada Fure–Yakobi”, Sib. mat. zhurn., 9:6 (1968), 1263–1283 | MR | Zbl

[4] Badkov V. M., “Skhodimost v srednem i pochti vsyudu ryadov Fure po mnogochlenam, ortogonalnym na otrezke”, Mat. sb., 95(137):2 (1974), 229–262 | MR | Zbl

[5] Badkov V. M., “Priblizhenie funktsii v ravnomernoi metrike summami Fure po ortogonalnym polinomam”, Tr. MIAN, 145, 1980, 20–62 | MR | Zbl

[6] Badkov V. M., “Ravnomernye asimptoticheskie predstavleniya ortogonalnykh polinomov”, Tr. MIAN SSSR, 164, 1983, 6–36 | MR | Zbl

[7] Badkov V. M., “Ravnomernye asimptoticheskie predstavleniya ortogonalnykh mnogochlenov”, Priblizhenie funktsii polinomami i splainami, UNTs AN SSSR, Sverdlovsk, 1985, 41–53 | MR

[8] Badkov V. M., “Dvustoronnie otsenki funktsii Lebega i ostatka ryada Fure po ortogonalnym mnogochlenam”, Approksimatsiya v konkretnykh i abstraktnykh banakhovykh prostranstvakh, UNTs AN SSSR, Sverdlovsk, 1987, 31–45 | MR

[9] Badkov V. M., “Asimptoticheskie i ekstremalnye svoistva ortogonalnykh polinomov pri nalichii osobennostei u vesa”, Tr. MIAN, 198, 1992, 41–88 | MR | Zbl

[10] Badkov V. M., “Asimptotika mnogochlenov vtorogo roda i dvustoronnie potochechnye otsenki ikh proizvodnykh”, Trudy Instituta matematiki i mekhaniki UrO RAN, 1, 1992, 71–83 | MR | Zbl

[11] Badkov V. M., “Potochechnye otsenki snizu modulei proizvodnykh mnogochlena, ortogonalnogo na okruzhnosti s vesom, imeyuschim osobennosti”, Mat. sb., 186:6 (1995), 3–14 | MR | Zbl

[12] Badkov V. M., “O nulyakh ortogonalnykh polinomov”, Trudy Instituta matematiki i mekhaniki UrO RAN, 11, no. 2, 2005, 30–46 | MR | Zbl

[13] Badkov V. M., Vvedenie v edinuyu teoriyu algebraicheskikh i trigonometricheskikh ortogonalnykh polinomov, ucheb. posobie, Izd-vo Ural. un-ta, Ekaterinburg, 2006, 132 pp. | MR

[14] Badkov V. M., “Potochechnye otsenki mnogochlenov, ortogonalnykh na okruzhnosti s vesom, ne prinadlezhaschim prostranstvam $L^r$ ($r>1$)”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 1, 2009, 66–78

[15] Belenkii A. M., “O razlozhenii funktsii v ryad Fure–Yakobi”, Konstruktivnaya teoriya funktsii i otobrazhenii, Kiev, 1981, 35–48

[16] Geronimus Ya. L., Mnogochleny, ortogonalnye na okruzhnosti i na otrezke, Fizmatgiz, M., 1958, 240 pp. | Zbl

[17] Pamyatnykh S. E., “Otsenki funktsii Lebega summ Fure po ortogonalnym polinomam”, Snezhinsk i nauka, tez. dokl. mezhotrasl. nauch.-prakt. konf., Izd-vo SFTI, Snezhinsk, 2000, 23–24

[18] Segë G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962, 500 pp.

[19] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 144 pp. | MR | Zbl

[20] Badkov V. M., “Estimations for the Lebesgue function and the remainder of the Fourier series with respect to orthogonal polynomials”, Functions, series, operators, North-Holland, Amsterdam etc., 1983, 165–181 | MR

[21] Badkov V. M., “Equiconvergence of Fourier sums in orthogonal polynomials”, Proc. Steklov Inst. Math., 2004, S101–S127 | MR | Zbl

[22] Sandakova S. L., “Two-sided pointwise estimate for Lebesgue function of Fourier sums with respect to trigonometric orthogonal polynomials”, Proc. Steklov Inst. Math., 2004, S107–S123 | MR

[23] Szeg G., “On bi-orthogonal systems of trigonometric polynomials”, Magy. Tud. Akad. Mat. Kut. Intz. Kozl., 8:3 (1963 (1964)), 255–273 | MR | Zbl