Kolmogorov-type inequalities for the norms of Riesz derivatives of multivariable functions and some applications
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 60-70
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $L_{\infty,s}^1(\mathbb R^m)$ be the space of functions $f\in L_\infty(\mathbb R^m)$ such that $\partial f/\partial x_i\in L_s(\mathbb R^m)$ for each $i=1,\dots,m$. New sharp Kolmogorov-type inequalities are obtained for the norms of the Riesz derivatives $\|D^\alpha f\|_\infty$ of functions $f\in L_{\infty,s}^1(\mathbb R^m)$. Stechkin's problem on the approximation of unbounded operators $D^\alpha$ by bounded operators on the class of functions $f\in L_{\infty,s}^1(\mathbb R^m)$ such that $\|\nabla f\|_s\le1$, as well as the problem on the optimal reconstruction of the operator $D^\alpha$ on elements of this class given with error $\delta$, is solved.
Keywords: fractional derivative, Kolmogorov-type inequalities, approximation of operators.
@article{TIMM_2011_17_3_a8,
     author = {V. F. Babenko and N. V. Parfinovich},
     title = {Kolmogorov-type inequalities for the norms of {Riesz} derivatives of multivariable functions and some applications},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {60--70},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a8/}
}
TY  - JOUR
AU  - V. F. Babenko
AU  - N. V. Parfinovich
TI  - Kolmogorov-type inequalities for the norms of Riesz derivatives of multivariable functions and some applications
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 60
EP  - 70
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a8/
LA  - ru
ID  - TIMM_2011_17_3_a8
ER  - 
%0 Journal Article
%A V. F. Babenko
%A N. V. Parfinovich
%T Kolmogorov-type inequalities for the norms of Riesz derivatives of multivariable functions and some applications
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 60-70
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a8/
%G ru
%F TIMM_2011_17_3_a8
V. F. Babenko; N. V. Parfinovich. Kolmogorov-type inequalities for the norms of Riesz derivatives of multivariable functions and some applications. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 60-70. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a8/

[1] Kolmogorov A. N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh funktsii na beskonechnom intervale”, Uchen. zapiski MGU. Matematika, 30:3 (1939), 3–16

[2] Kolmogorov A. N., “O neravenstvakh mezhdu verkhnimi granyami posledovatelnykh proizvodnykh funktsii na beskonechnom intervale”, Izbr. tr.: Matematika, mekhanika, Nauka, M., 1985, 252–263

[3] Arestov V. V., Gabushin V. N., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi”, Izv. vuzov. Matematika, 1995, no. 11, 42–63 | MR | Zbl

[4] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6 (1996), 89–124 | MR | Zbl

[5] Tikhomirov V. M., Magaril-Ilyaev G. G., “Neravenstva dlya proizvodnykh”, Kommentarii k: A. N. Kolmogorov, Izbr. tr., Nauka, M., 1985, 387–390 | MR

[6] V. F. Babenko, N. P. Korneichuk, V. A. Kofanov, S. A. Pichugov, Neravenstva dlya proizvodnykh i ikh prilozheniya, Nauk. dumka, Kiev, 2003, 590 pp.

[7] Kwong M. K., Zettl A., Norm inequalities for derivatives and differences, Lecture Notes Math., 1536, Springer-Verlag, Berlin etc., 1992, 150 pp. | MR | Zbl

[8] Mitrinovic D. S., Pecaric J. E., Fink A. M., Inequalities involving functions and their integrals and derivatives, Kluwer Acad. Publ., Dordrecht–Boston–London, 1991, 587 pp. | MR | Zbl

[9] Konovalov V. N., “Tochnye neravenstva dlya norm funktsii, tretikh chastnykh i vtorykh smeshannykh proizvodnykh”, Mat. zametki, 23:1 (1978), 67–78 | MR | Zbl

[10] Buslaev A. P., Tikhomirov V. M., “O neravenstvakh dlya proizvodnykh v mnogomernom sluchae”, Mat. zametki, 25:1 (1979), 59–73 | MR | Zbl

[11] Timoshin O. A., “Tochnye neravenstva mezhdu normami proizvodnykh vtorogo i tretego poryadkov”, Dokl. RAN, 344:1 (1995), 20–22 | MR | Zbl

[12] Timofeev V. G., “Neravenstva tipa Landau dlya funktsii neskolkikh peremennykh”, Mat. zametki, 37:5 (1985), 676–689 | MR | Zbl

[13] Babenko V. F., Kofanov V. A., Pichugov S. A., “Multivariate inequalities of Kolmogorov type and their applications”, Multivariate approximation and splines, eds. G. Nrberger, J. W. Schmidt, G. Walz, Birkhäuser Verlag, Basel, 1997, 1–12 | MR | Zbl

[14] Babenko V. F., “O tochnykh neravenstvakh tipa Kolmogorova dlya funktsii dvukh peremennykh”, Dokl. NAN Ukrainy, 2000, no. 5, 7–11 | MR | Zbl

[15] Babenko V. F., Pichugov S. A., “Kolmogorov type inequalities for fractional derivatives of Hölder functions of two variables”, East J. Approx., 13:3 (2007), 321–329 | MR

[16] Samko S. G., Kilbas A. A., Marychev O. I., Integraly i proizvodnye drobnogo poryadka i ikh prilozheniya, Minsk, 1987, 650 pp.

[17] Geisberg S. P., “Obobschenie neravenstva Adamara”, Issledovanie po nekotorym problemam konstruktivnoi teorii funktsii, sb. nauch. tr., 50, LOMI, Leningrad, 1965, 42–54 | MR

[18] Arestov V. V., “Inequalities for fractional derivatives on the half-line”, Approximation theory, proc. conf., PWN-Pol. Sci. Publ., Warsaw, 1979, 19–34 | MR

[19] Magaril-Iljaev G. G., Tihomirov V. M., “On the Kolmogorov inequality for fractional derivatives on the half-line”, Anal. Math., 7:1 (1981), 37–47 | DOI | MR

[20] Babenko V. F., Churilova M. S., “O neravenstvakh tipa Kolmogorova dlya proizvodnykh drobnogo poryadka”, Vestn. Dnepropetrovskogo un-ta. Matematika, 2001, no. 6, 16–20

[21] Babenko V. F., Pichugov S. A., “Tochnye otsenki dlya norm drobnykh proizvodnykh funktsii mnogikh peremennykh, udovletvoryayuschikh usloviyu Geldera”, Mat. zametki, 87:1 (2010), 26–34 | MR | Zbl

[22] Babenko V. F., Parfinovych N. V., Pichugov S. A., “Sharp Kolmogorov-type inequalities for norms of fractional derivatives of multivariate functions”, Ukr. mat. zhurn., 62:3 (2010), 301–314 | MR | Zbl

[23] V. P. Motornyi, V. F. Babenko, A. A. Dovgoshei, O. I. Kuznetsova, Teoriya approksimatsii i garmonicheskii analiz, Nauk. dumka, Kiev, 2010, 302 pp.

[24] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969, 480 pp. | MR

[25] Stechkin S. B., “Nailuchshee priblizhenie ogranichennykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | MR | Zbl

[26] Babenko V. F., Churilova M. S., “Kolmogorov type inequalities for hypersingular integrals with homogeneous characteristic”, Banach J. Math., 1 (2007), 66–77 | MR | Zbl

[27] Lib E., Loss M., Analiz, Nauch. kniga, Novosibirsk, 1998, 258 pp.