Voir la notice du chapitre de livre
@article{TIMM_2011_17_3_a6,
author = {R. R. Akopyan},
title = {Best approximation of the operator of analytic continuation on the class of functions analytic in a~strip},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {46--54},
year = {2011},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a6/}
}
TY - JOUR AU - R. R. Akopyan TI - Best approximation of the operator of analytic continuation on the class of functions analytic in a strip JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 46 EP - 54 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a6/ LA - ru ID - TIMM_2011_17_3_a6 ER -
R. R. Akopyan. Best approximation of the operator of analytic continuation on the class of functions analytic in a strip. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 46-54. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a6/
[1] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6(312) (1996), 89–124 | MR | Zbl
[2] Ibragimov I. I., Teoriya priblizheniya tselymi funktsiyami, Izd-vo Elm, Baku, 1979, 465 pp. | MR | Zbl
[3] Osipenko K. Yu., Optimal recovery of analytic functions, NOVA Science Publ. Inc., Huntington, 2000, 220 pp.
[4] Polia G., Seg G., Zadachi i teoremy iz analiza, v 2 t., v. 1, Nauka, M., 1978, 392 pp.
[5] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950, 336 pp. | MR
[6] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, Nauka, M., 1981, 799 pp. | MR | Zbl
[7] Stechkin S .B., “Neravenstva mezhdu normami proizvodnykh proizvolnoi funktsii”, Acta Sci. Math., 26:3–4 (1965), 225–230 | Zbl
[8] Stechkin S. B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | MR | Zbl