On the (bi)infinite case of Shadrin's theorem concerning the $L_\infty$-boundedness of the $L_2$-spline projector
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 24-29
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Some loose ends in Shadrin's remarkable paper are tied up.
Keywords: Shadrin's theorem, $L_2$-spline projector.
@article{TIMM_2011_17_3_a4,
     author = {Carl de Boor},
     title = {On the (bi)infinite case of {Shadrin's} theorem concerning the $L_\infty$-boundedness of the $L_2$-spline projector},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {24--29},
     year = {2011},
     volume = {17},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a4/}
}
TY  - JOUR
AU  - Carl de Boor
TI  - On the (bi)infinite case of Shadrin's theorem concerning the $L_\infty$-boundedness of the $L_2$-spline projector
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 24
EP  - 29
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a4/
LA  - en
ID  - TIMM_2011_17_3_a4
ER  - 
%0 Journal Article
%A Carl de Boor
%T On the (bi)infinite case of Shadrin's theorem concerning the $L_\infty$-boundedness of the $L_2$-spline projector
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 24-29
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a4/
%G en
%F TIMM_2011_17_3_a4
Carl de Boor. On the (bi)infinite case of Shadrin's theorem concerning the $L_\infty$-boundedness of the $L_2$-spline projector. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 24-29. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a4/

[1] de Boor C., “The quasi-interpolant as a tool in elementary polynomial spline theory”, Approximation Theory, eds. G. G. Lorentz, et al., Acad. Press, New York, 1973, 269–276 | MR

[2] de Boor C., “The inverse of a totally positive bi-infinite band matrix”, Trans. Amer. Math. Soc., 274 (1982), 45–58 | DOI | MR | Zbl

[3] de Boor C., Jia Rong-Qing, Pinkus A., “Structure of invertible (bi)infinite totally positive matrices”, Linear Algebra Appl., 47 (1982), 41–55 | DOI | MR | Zbl

[4] Lindner M., Infinite matrices and their finite sections. An introduction to the limit operator method, Frontiers in mathematics, Birkhauser, Basel, 2006, xv+191 pp. | MR | Zbl

[5] Pinkus A., Totally positive matrices, CUP, Cambridge, UK, 2010, xii+182 pp. | MR

[6] Shadrin A. Yu., “The $L_\infty$-norm of the $L_2$-spline projector is bounded independently of the knot sequence: A proof of de Boor's conjecture”, Acta Math., 187 (2001), 59–137 | DOI | MR | Zbl