Two-scale relations for analogs of basis splines of small degrees
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 319-323
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For generalized linear and parabolic $B$-splines with uniform knots constructed with the help of only one function $\varphi(x)$, conditions are found that guarantee the validity of two-scale relations for these splines.
Keywords: $B$-spline, uniform knots, two-scale relation.
@article{TIMM_2011_17_3_a31,
     author = {V. T. Shevaldin},
     title = {Two-scale relations for analogs of basis splines of small degrees},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {319--323},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a31/}
}
TY  - JOUR
AU  - V. T. Shevaldin
TI  - Two-scale relations for analogs of basis splines of small degrees
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 319
EP  - 323
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a31/
LA  - ru
ID  - TIMM_2011_17_3_a31
ER  - 
%0 Journal Article
%A V. T. Shevaldin
%T Two-scale relations for analogs of basis splines of small degrees
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 319-323
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a31/
%G ru
%F TIMM_2011_17_3_a31
V. T. Shevaldin. Two-scale relations for analogs of basis splines of small degrees. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 319-323. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a31/

[1] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i prilozheniya, Mir, M., 1972, 318 pp. | Zbl

[2] Shevaldin V. T., “Otsenki snizu poperechnikov klassov istokoobrazno predstavimykh funktsii”, Tr. MIAN SSSR, 189, 1989, 185–200 | MR | Zbl

[3] Rvachev V. A., “Finitnye resheniya funktsionalno-differentsialnykh uravnenii i ikh prilozheniya”, Uspekhi mat. nauk, 45:1 (1990), 77–103 | MR | Zbl

[4] Leontev V. L., Ortogonalnye finitnye funktsii i chislennye metody, UlGU, Ulyanovsk, 2003, 178 pp. | MR

[5] Kvasov B. I., Metody izogeometricheskoi approksimatsii splainami, Fizmatlit, M., 2006, 360 pp.

[6] Demyanovich Yu. K., “Veivlet bazis $B_\varphi$-splainov dlya neravnomernoi setki”, Mat. modelirovanie, 18:10 (2006), 123–126 | MR | Zbl

[7] Shevaldin V. T., “Trekhtochechnaya skhema approksimatsii lokalnymi splainami”, Tr. Mezhdunar. let. mat. shk. S. B. Stechkina po teorii funktsii, Iz-vo TulGU, Tula, 2007, 151–156

[8] Chui Ch., Vvedenie v veivlety, Mir, M., 2001, 412 pp.

[9] Subbotin Yu. N., Chernykh N. I., “Konstruktsii vspleskov v $W^m_2(\mathbb R)$ i ikh approksimativnye svoistva v raznykh metrikakh”, Trudy Instituta matematiki i mekhaniki UrO RAN, 11, no. 2, 2005, 131–167 | MR | Zbl

[10] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2005, 616 pp. | MR

[11] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[12] Shevaldin V. T., “Kalibrovochnye sootnosheniya dlya $B-L$-splainov”, Sovremennye problemy matematiki, tez. nauch. dokl. 42-i Vseros. molodezh. shk.-konf., Institut matematiki i mekhaniki UrO RAN, Ekaterinburg, 2011, 151–153