Iterative methods for solving linear operator equations in Banach spaces
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 303-318

Voir la notice de l'article provenant de la source Math-Net.Ru

Iterative methods for solving the linear operator equation $Ax=y$ with $B$-symmetric $B$-positive operator acting from a Banach space $X$ to a Banach space $Y$ are considered. The space $X$ is assumed to be uniformly convex and smooth, whereas $Y$ is an arbitrary Banach space. The cases of exact and disturbed data are considered and the strong (norm) convergence of the iterative processes is proved.
Keywords: iterative method, duality mapping, $B$-symmetric operator, $B$-positive operator, Bregman distance, uniformly convex space, smooth space, Xu–Roach characteristic inequality, modulus of smoothness of a space.
Mots-clés : minimum-norm solution
@article{TIMM_2011_17_3_a30,
     author = {P. A. Chistyakov},
     title = {Iterative methods for solving linear operator equations in {Banach} spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {303--318},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a30/}
}
TY  - JOUR
AU  - P. A. Chistyakov
TI  - Iterative methods for solving linear operator equations in Banach spaces
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 303
EP  - 318
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a30/
LA  - ru
ID  - TIMM_2011_17_3_a30
ER  - 
%0 Journal Article
%A P. A. Chistyakov
%T Iterative methods for solving linear operator equations in Banach spaces
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 303-318
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a30/
%G ru
%F TIMM_2011_17_3_a30
P. A. Chistyakov. Iterative methods for solving linear operator equations in Banach spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 303-318. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a30/