Form preservation under approximation by local exponential splines of an arbitrary order
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 291-299
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We continue the study of the properties of local $\mathcal L$-splines with uniform knots (such splines were constructed in the authors' earlier papers) corresponding to a linear differential operator $\mathcal L$ of order $r$ with constant coefficients and real pairwise distinct roots of the characteristic polynomial. Sufficient conditions (which are also necessary) are established under which the $\mathcal L$-spline locally inherits the property of the generalized $k$-monotonicity of $(k\le r-1)$ input data, which are the values of the approximated function at the nodes of a uniform grid shifted with respect to the grid of knots of the $\mathcal L$-spline. The parameters of an $\mathcal L$-spline that is exact on the kernel of the operator $\mathcal L$ are written explicitly.
Keywords: form preservation, $k$-monotonicity, local $\mathcal L$-spline.
@article{TIMM_2011_17_3_a28,
     author = {E. V. Strelkova and V. T. Shevaldin},
     title = {Form preservation under approximation by local exponential splines of an arbitrary order},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {291--299},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a28/}
}
TY  - JOUR
AU  - E. V. Strelkova
AU  - V. T. Shevaldin
TI  - Form preservation under approximation by local exponential splines of an arbitrary order
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 291
EP  - 299
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a28/
LA  - ru
ID  - TIMM_2011_17_3_a28
ER  - 
%0 Journal Article
%A E. V. Strelkova
%A V. T. Shevaldin
%T Form preservation under approximation by local exponential splines of an arbitrary order
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 291-299
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a28/
%G ru
%F TIMM_2011_17_3_a28
E. V. Strelkova; V. T. Shevaldin. Form preservation under approximation by local exponential splines of an arbitrary order. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 291-299. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a28/

[1] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[2] Lyche T., Schumaker L. L., “Local spline approximation methods”, J. Approx. Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl

[3] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984, 352 pp. | MR

[4] Shevaldina E. V., “Approksimatsiya lokalnymi $\mathcal L$-splainami chetnogo poryadka, sokhranyayuschimi yadro differentsialnogo operatora”, Izv. TulGU. Estestvennye nauki, 2 (2009), 62–73

[5] Shevaldina E. V., “Lokalnye $\mathcal L$-splainy, sokhranyayuschie yadro differentsialnogo operatora”, Sib. zhurn. vychisl. matematiki, 13:1 (2010), 111–121 | Zbl

[6] Strelkova E. V., Shevaldin V. T., “Approksimatsiya lokalnymi $\mathcal L$-splainami, tochnymi na podprostranstvakh yadra differentsialnogo operatora”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 272–280

[7] Shevaldin V. T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Tr. MIAN SSSR, 164, 1983, 203–240 | MR | Zbl

[8] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–172 | MR | Zbl

[9] ter Morsche H. G., Interpolation and extremal properties of $\mathcal L$-spline functions, Dissertation, Techinische Hogeschool Eindhoven, Eindhoven, 1982, 124 pp. | MR | Zbl

[10] Volkov Yu. S., Strelkova E. V., Shevaldin V. T., “O lokalnoi approksimatsii kubicheskimi splainami”, Metody splain-funktsii, tez. dokl. Ros. konf., posvyasch. 80-letiyu so dnya rozhdeniya Yu. S. Zavyalova, IM SO RAN, Novosibirsk, 2011, 35–36

[11] Shevaldina E. V., “Approksimatsiya lokalnymi eksponentsialnymi splainami s proizvolnymi uzlami”, Sib. zhurn. vychisl. matematiki, 9:4 (2006), 391–402 | Zbl

[12] Subbotin Yu. N., “Approksimatsiya polinomialnymi i trigonometricheskimi splainami tretego poryadka, sokhranyayuschaya nekotorye svoistva approksimiruemykh funktsii”, Trudy Instituta matematiki i mekhaniki UrO RAN, 13, no. 2, 2007, 156–166

[13] Subbotin Yu. N., “Formosokhranyayuschaya eksponentsialnaya approksimatsiya”, Izv. vuzov. Matematika, 2009, no. 11, 53–60 | MR | Zbl

[14] Zhdanov P. G., Shevaldin V. T., “Formosokhranyayuschie lokalnye $\mathcal L$-splainy, sootvetstvuyuschie proizvolnomu lineinomu differentsialnomu operatoru tretego poryadka”, Zbirnik prats In-tu matematiki NAN Ukraïni, 5:1 (2008), 124–141 | MR | Zbl

[15] Schumaker L. L., “On recursion for generalized splines”, J. Approx. Theory, 36:1 (1982), 16–31 | DOI | MR | Zbl

[16] Li Y., “On the recurrence relations for B-splines defined by certain $\mathcal L$-splines”, J. Approx. Theory, 43:4 (1985), 359–369 | DOI | MR | Zbl

[17] Aldaz J. M., Kounchev O., Render H., “On real analytic recurrence relations for cardinal exponential B-splines”, J. Approx. Theory, 145:2 (2007), 253–265 | DOI | MR | Zbl

[18] Korovkin P. P., Lineinye operatory i teoriya priblizhenii, GIFML, M., 1959, 211 pp.