Form preservation under approximation by local exponential splines of an arbitrary order
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 291-299

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue the study of the properties of local $\mathcal L$-splines with uniform knots (such splines were constructed in the authors' earlier papers) corresponding to a linear differential operator $\mathcal L$ of order $r$ with constant coefficients and real pairwise distinct roots of the characteristic polynomial. Sufficient conditions (which are also necessary) are established under which the $\mathcal L$-spline locally inherits the property of the generalized $k$-monotonicity of $(k\le r-1)$ input data, which are the values of the approximated function at the nodes of a uniform grid shifted with respect to the grid of knots of the $\mathcal L$-spline. The parameters of an $\mathcal L$-spline that is exact on the kernel of the operator $\mathcal L$ are written explicitly.
Keywords: form preservation, $k$-monotonicity, local $\mathcal L$-spline.
@article{TIMM_2011_17_3_a28,
     author = {E. V. Strelkova and V. T. Shevaldin},
     title = {Form preservation under approximation by local exponential splines of an arbitrary order},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {291--299},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a28/}
}
TY  - JOUR
AU  - E. V. Strelkova
AU  - V. T. Shevaldin
TI  - Form preservation under approximation by local exponential splines of an arbitrary order
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 291
EP  - 299
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a28/
LA  - ru
ID  - TIMM_2011_17_3_a28
ER  - 
%0 Journal Article
%A E. V. Strelkova
%A V. T. Shevaldin
%T Form preservation under approximation by local exponential splines of an arbitrary order
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 291-299
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a28/
%G ru
%F TIMM_2011_17_3_a28
E. V. Strelkova; V. T. Shevaldin. Form preservation under approximation by local exponential splines of an arbitrary order. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 291-299. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a28/