Sharp Markov brothers type inequality in the spaces $L_p$, $L_1$ on a closed interval
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 282-290
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study an inequality between the $L_p$-mean of the $(n-1)$th derivative of an algebraic polynomial of degree $n\geq2$ and the $L_1$-mean of this polynomial on a closed interval. Sharp constants and extremal polynomials are written for all $p\in[0,\infty]$.
Mots-clés : algebraic polynomial
Keywords: Markov type inequalities, Nikolskii type inequalities.
@article{TIMM_2011_17_3_a27,
     author = {I. E. Simonov},
     title = {Sharp {Markov} brothers type inequality in the spaces $L_p$, $L_1$ on a~closed interval},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {282--290},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a27/}
}
TY  - JOUR
AU  - I. E. Simonov
TI  - Sharp Markov brothers type inequality in the spaces $L_p$, $L_1$ on a closed interval
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 282
EP  - 290
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a27/
LA  - ru
ID  - TIMM_2011_17_3_a27
ER  - 
%0 Journal Article
%A I. E. Simonov
%T Sharp Markov brothers type inequality in the spaces $L_p$, $L_1$ on a closed interval
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 282-290
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a27/
%G ru
%F TIMM_2011_17_3_a27
I. E. Simonov. Sharp Markov brothers type inequality in the spaces $L_p$, $L_1$ on a closed interval. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 282-290. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a27/

[1] Glazyrina P. Yu., “Neravenstvo bratev Markovykh v prostranstve $L_0$ na otrezke”, Mat. zametki, 78:1 (2005), 59–65 | MR | Zbl

[2] Glazyrina P. Yu., “Tochnoe neravenstvo Markova–Nikolskogo dlya algebraicheskikh mnogochlenov v prostranstvakh $L_q$, $L_0$ na otrezke”, Mat. zametki, 84:1 (2008), 3–22 | MR | Zbl

[3] Markov A. A., “Ob odnom voprose D. I. Mendeleeva”, Zap. Imp. akad. nauk, 62, SPb., 1889, 1–24

[4] Markov V. A., O funktsiyakh, naimenee uklonyayuschikhsya ot nulya v dannom promezhutke, SPb., 1892, 110 pp.

[5] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948, 456 pp.

[6] Chebyshev P. L., “Teoriya mekhanizmov, izvestnykh pod nazvaniem parallelogrammov”, Poln. sobr. soch., v 5 t., v. 2, Matematicheskii analiz, Izd-vo AN SSSR, M.–L., 1947, 23–51

[7] Bojanov B. D., “An extension of the Markov inequality”, J. Approx. Theory, 35:2 (1982), 181–190 | DOI | MR | Zbl

[8] Bojanov B., “Markov-type inequalities for polynomials and splines”, Proc. Tenth Approx. Theory Conf. Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2002, 31–90 | MR | Zbl

[9] Borwein P., Erdlyi T., Polynomials and polynomial inequalities, Springer-Verlag, New York, 1995, 496 pp. | MR

[10] Drfler P., “New inequalities of Markov type”, SIAM J. Math. Anal., 18 (1987), 490–494 | DOI | MR

[11] Geronimus J., “Sur quelques proprits extrmales de polynomes dont les coefficients premiers sont donnes”, Soobsch. Khark. mat. o-va. Ser. 4, 12 (1935), 49–58 | Zbl

[12] Hille E., Szeg G., Tamarkin J. D., “On some generalizations of a theorem of A. Markoff”, Duke Math. J., 3 (1937), 729–739 | DOI | MR | Zbl

[13] Korkine A., Zolotareff G., “Sur un certain minimum”: Korkin A. N., Sochineniya, v. 1, S.-Peterb. un-t, SPb., 1911, 329–349

[14] Kro A., “On the exact constant in the $L_2$ Markov inequality”, J. Approx. Theory, 151:2 (2008), 208–211 | DOI | MR | Zbl

[15] Labelle G., “Concerning polynomials on the unit interval”, Proc. Amer. Math. Soc., 20 (1969), 321–326 | DOI | MR | Zbl

[16] Milovanovic G. V., “Various extremal problems of Markovs type for algebraic polynomials”, Facta Univ. Ser. Math. Inform., 2 (1987), 7–28 | MR | Zbl

[17] Milovanovi G. V., Mitrinovic D. S., Rassias Th. M., Topics in polynomials: extremal problems, inequalities, zeros, World Scientific, Singapore, 1994, 821 pp. | MR | Zbl

[18] Rahman Q. I., Schmeisser G., Analytic theory of polynomials, Oxford Univ. Press, Oxford, 2002, 742 pp. | MR | Zbl