Chromatic uniqueness of elements of height~2 in lattices of complete multipartite graphs
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 271-281
Voir la notice de l'article provenant de la source Math-Net.Ru
The purpose of the paper is to prove the following theorem. Let integers $n,t$, and $h$ be such that $0$ and $h\leq2$. Then, any complete $t$-partite graph with nontrivial parts that has height $h$ in the lattice $NPL(n,t)$ is chromatically unique.
Mots-clés :
integer partition, complete multipartite graph
Keywords: lattice, graph, chromatic polynomial, chromatic uniqueness.
Keywords: lattice, graph, chromatic polynomial, chromatic uniqueness.
@article{TIMM_2011_17_3_a26, author = {T. A. Senchonok}, title = {Chromatic uniqueness of elements of height~2 in lattices of complete multipartite graphs}, journal = {Trudy Instituta matematiki i mehaniki}, pages = {271--281}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a26/} }
TY - JOUR AU - T. A. Senchonok TI - Chromatic uniqueness of elements of height~2 in lattices of complete multipartite graphs JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 271 EP - 281 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a26/ LA - ru ID - TIMM_2011_17_3_a26 ER -
T. A. Senchonok. Chromatic uniqueness of elements of height~2 in lattices of complete multipartite graphs. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 271-281. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a26/