Interpolation in a~ball with a~minimum value of the $L_p$-norm of the Laplace operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 258-265

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of interpolating finite sets of numerical data bounded in $l_p$-norms ($1\leq p\infty$) by smooth functions that are defined in an $n$-dimensional Euclidean ball of radius $R$ and vanish on the boundary of the ball. Under some constraints on the location of interpolation nodes, we obtain two-sided estimates with a correct dependence on $R$ for the $L_p$-norms of the Laplace operators of the best interpolants.
Mots-clés : interpolation
Keywords: Laplace operator, cubic $B$-splines.
@article{TIMM_2011_17_3_a24,
     author = {S. I. Novikov},
     title = {Interpolation in a~ball with a~minimum value of the $L_p$-norm of the {Laplace} operator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {258--265},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a24/}
}
TY  - JOUR
AU  - S. I. Novikov
TI  - Interpolation in a~ball with a~minimum value of the $L_p$-norm of the Laplace operator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 258
EP  - 265
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a24/
LA  - ru
ID  - TIMM_2011_17_3_a24
ER  - 
%0 Journal Article
%A S. I. Novikov
%T Interpolation in a~ball with a~minimum value of the $L_p$-norm of the Laplace operator
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 258-265
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a24/
%G ru
%F TIMM_2011_17_3_a24
S. I. Novikov. Interpolation in a~ball with a~minimum value of the $L_p$-norm of the Laplace operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 258-265. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a24/