Interpolation in a ball with a minimum value of the $L_p$-norm of the Laplace operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 258-265
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of interpolating finite sets of numerical data bounded in $l_p$-norms ($1\leq p\infty$) by smooth functions that are defined in an $n$-dimensional Euclidean ball of radius $R$ and vanish on the boundary of the ball. Under some constraints on the location of interpolation nodes, we obtain two-sided estimates with a correct dependence on $R$ for the $L_p$-norms of the Laplace operators of the best interpolants.
Mots-clés : interpolation
Keywords: Laplace operator, cubic $B$-splines.
@article{TIMM_2011_17_3_a24,
     author = {S. I. Novikov},
     title = {Interpolation in a~ball with a~minimum value of the $L_p$-norm of the {Laplace} operator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {258--265},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a24/}
}
TY  - JOUR
AU  - S. I. Novikov
TI  - Interpolation in a ball with a minimum value of the $L_p$-norm of the Laplace operator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 258
EP  - 265
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a24/
LA  - ru
ID  - TIMM_2011_17_3_a24
ER  - 
%0 Journal Article
%A S. I. Novikov
%T Interpolation in a ball with a minimum value of the $L_p$-norm of the Laplace operator
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 258-265
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a24/
%G ru
%F TIMM_2011_17_3_a24
S. I. Novikov. Interpolation in a ball with a minimum value of the $L_p$-norm of the Laplace operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 258-265. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a24/

[1] Subbotin Yu. N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN im. V. A. Steklova, 78, 1965, 24–42 | MR | Zbl

[2] Subbotin Yu. N., “Funktsionalnaya interpolyatsiya v srednem s naimenshei $n$-i proizvodnoi”, Tr. MIAN im. V. A. Steklova, 88, 1967, 30–60 | MR | Zbl

[3] Subbotin Yu. N., “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Tr. MIAN im. V. A. Steklova, 138, 1975, 118–173 | MR | Zbl

[4] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–172 | MR | Zbl

[5] Shevaldin V. T., “Ob odnoi zadache ekstremalnoi interpolyatsii”, Mat. zametki, 29:4 (1981), 603–622 | MR | Zbl

[6] Shevaldin V. T., “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Tr. MIAN im. V. A. Steklova, 164, 1983, 203–240 | MR | Zbl

[7] Novikov S. I., “Zadachi ekstremalnoi funktsionalnoi interpolyatsii”, Tr. Mezhdunar. shk. S. B. Stechkina po teorii funktsii, Izd-vo TulGU, Tula, 2007, 100–109

[8] Novikov S. I., Shevaldin V. T., “Ob odnoi zadache ekstremalnoi interpolyatsii dlya funktsii mnogikh peremennykh”, Trudy Instituta matematiki i mekhaniki UrO RAN, 7, no. 1, 2001, 144–159 | MR | Zbl

[9] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967, 376 pp. | MR

[10] Novikov S. I., “Interpolyatsiya s minimalnym znacheniem normy operatora Laplasa v share”, Zbirnik prats In-tu matematiki NAN Ukraïni, 5:1 (2008), 248–262 | Zbl

[11] Fisher S., Jerome J., Minimum norm extremals in function spaces, Lecture Notes Math., 479, 1975, 209 pp. | MR

[12] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1971, 512 pp. | MR | Zbl

[13] Burenkov V. I., Gusakov V. A., “O tochnykh postoyannykh v teoremakh vlozheniya Soboleva”, Dokl. AN SSSR, 294:6 (1987), 1293–1297 | MR | Zbl

[14] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976, 248 pp. | MR | Zbl

[15] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980, 352 pp. | MR

[16] de Boor C., “Splines as linear combinations of B-splines”, Approximation Theory, Proc. intern. symposium (Austin, Texas, 1976), v. II, Acad. Press, New York, ect., 1976, 1–47

[17] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 3, Nauka, M., 1969, 656 pp.

[18] Burenkov V. I., Sobolev spaces on domains, Teubner Texts in Math., 137, B. G. Teubner Verlag GmbH, Stuttgart, 1998, 312 pp. | MR | Zbl

[19] Madych W. R., Potter E., “An estimate for multivariate interpolation”, J. Approx. Theory, 43:2 (1985), 132–139 | DOI | MR | Zbl