Interpolation in a~ball with a~minimum value of the $L_p$-norm of the Laplace operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 258-265
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of interpolating finite sets of numerical data bounded in $l_p$-norms ($1\leq p\infty$) by smooth functions that are defined in an $n$-dimensional Euclidean ball of radius $R$ and vanish on the boundary of the ball. Under some constraints on the location of interpolation nodes, we obtain two-sided estimates with a correct dependence on $R$ for the $L_p$-norms of the Laplace operators of the best interpolants.
Mots-clés :
interpolation
Keywords: Laplace operator, cubic $B$-splines.
Keywords: Laplace operator, cubic $B$-splines.
@article{TIMM_2011_17_3_a24,
author = {S. I. Novikov},
title = {Interpolation in a~ball with a~minimum value of the $L_p$-norm of the {Laplace} operator},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {258--265},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a24/}
}
TY - JOUR AU - S. I. Novikov TI - Interpolation in a~ball with a~minimum value of the $L_p$-norm of the Laplace operator JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 258 EP - 265 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a24/ LA - ru ID - TIMM_2011_17_3_a24 ER -
S. I. Novikov. Interpolation in a~ball with a~minimum value of the $L_p$-norm of the Laplace operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 258-265. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a24/