On symmetrical $4$-extensions of the grid $\Lambda^2$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 242-257

Voir la notice de l'article provenant de la source Math-Net.Ru

The finiteness of the set of all $Aut_0(\Lambda^2)$-symmetrical $4$-extensions of the $2$-dimensional grid $\Lambda^2$ is proved with the help of the finiteness criterion for the set of symmetrical $q$-extensions of the grid $\Lambda^2$, which was obtained by the authors earlier. In addition, the list of all $Aut_0(\Lambda^2)$-symmetrical $4$-extensions of the grid $\Lambda^2$ is presented.
Keywords: $d$-dimensional grids, symmetrical $q$-extensions, automorphisms.
@article{TIMM_2011_17_3_a23,
     author = {E. A. Neganova and V. I. Trofimov},
     title = {On symmetrical $4$-extensions of the grid $\Lambda^2$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {242--257},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a23/}
}
TY  - JOUR
AU  - E. A. Neganova
AU  - V. I. Trofimov
TI  - On symmetrical $4$-extensions of the grid $\Lambda^2$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 242
EP  - 257
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a23/
LA  - ru
ID  - TIMM_2011_17_3_a23
ER  - 
%0 Journal Article
%A E. A. Neganova
%A V. I. Trofimov
%T On symmetrical $4$-extensions of the grid $\Lambda^2$
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 242-257
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a23/
%G ru
%F TIMM_2011_17_3_a23
E. A. Neganova; V. I. Trofimov. On symmetrical $4$-extensions of the grid $\Lambda^2$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 242-257. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a23/