On symmetrical $4$-extensions of the grid $\Lambda^2$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 242-257
Voir la notice de l'article provenant de la source Math-Net.Ru
The finiteness of the set of all $Aut_0(\Lambda^2)$-symmetrical $4$-extensions of the $2$-dimensional grid $\Lambda^2$ is proved with the help of the finiteness criterion for the set of symmetrical $q$-extensions of the grid $\Lambda^2$, which was obtained by the authors earlier. In addition, the list of all $Aut_0(\Lambda^2)$-symmetrical $4$-extensions of the grid $\Lambda^2$ is presented.
Keywords:
$d$-dimensional grids, symmetrical $q$-extensions, automorphisms.
@article{TIMM_2011_17_3_a23,
author = {E. A. Neganova and V. I. Trofimov},
title = {On symmetrical $4$-extensions of the grid $\Lambda^2$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {242--257},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a23/}
}
TY - JOUR AU - E. A. Neganova AU - V. I. Trofimov TI - On symmetrical $4$-extensions of the grid $\Lambda^2$ JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 242 EP - 257 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a23/ LA - ru ID - TIMM_2011_17_3_a23 ER -
E. A. Neganova; V. I. Trofimov. On symmetrical $4$-extensions of the grid $\Lambda^2$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 242-257. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a23/