Independence of error estimates of interpolation by cubic polynomials from the angles of a~triangle
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 233-241

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two methods of Birkhoff interpolation of a function of two variables by cubic polynomials on a triangle for the finite element method. Error estimates for the proposed cubic elements depend only on the diameter of the partition and do not depend on the angles of triangulation. We show that the obtained estimates cannot be improved.
Mots-clés : error of interpolation, triangulation
Keywords: piecewise cubic polynomial, finite element method.
@article{TIMM_2011_17_3_a22,
     author = {N. V. Latypova},
     title = {Independence of error estimates of interpolation by cubic polynomials from the angles of a~triangle},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {233--241},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a22/}
}
TY  - JOUR
AU  - N. V. Latypova
TI  - Independence of error estimates of interpolation by cubic polynomials from the angles of a~triangle
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 233
EP  - 241
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a22/
LA  - ru
ID  - TIMM_2011_17_3_a22
ER  - 
%0 Journal Article
%A N. V. Latypova
%T Independence of error estimates of interpolation by cubic polynomials from the angles of a~triangle
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 233-241
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a22/
%G ru
%F TIMM_2011_17_3_a22
N. V. Latypova. Independence of error estimates of interpolation by cubic polynomials from the angles of a~triangle. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 233-241. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a22/