Independence of error estimates of interpolation by cubic polynomials from the angles of a triangle
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 233-241
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider two methods of Birkhoff interpolation of a function of two variables by cubic polynomials on a triangle for the finite element method. Error estimates for the proposed cubic elements depend only on the diameter of the partition and do not depend on the angles of triangulation. We show that the obtained estimates cannot be improved.
Mots-clés : error of interpolation, triangulation
Keywords: piecewise cubic polynomial, finite element method.
@article{TIMM_2011_17_3_a22,
     author = {N. V. Latypova},
     title = {Independence of error estimates of interpolation by cubic polynomials from the angles of a~triangle},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {233--241},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a22/}
}
TY  - JOUR
AU  - N. V. Latypova
TI  - Independence of error estimates of interpolation by cubic polynomials from the angles of a triangle
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 233
EP  - 241
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a22/
LA  - ru
ID  - TIMM_2011_17_3_a22
ER  - 
%0 Journal Article
%A N. V. Latypova
%T Independence of error estimates of interpolation by cubic polynomials from the angles of a triangle
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 233-241
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a22/
%G ru
%F TIMM_2011_17_3_a22
N. V. Latypova. Independence of error estimates of interpolation by cubic polynomials from the angles of a triangle. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 233-241. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a22/

[1] Ciarlet P. G., Raviart P. A., “General Lagrange and Hermite interpolation in $\mathbb R^n$ with applications to finite element methods”, Arch. Rat. Mech. and Anal., 46:3 (1972), 177–199 | DOI | MR | Zbl

[2] Subbotin Yu. N., “Mnogomernaya kusochno-polinomialnaya interpolyatsiya”, Metody approksimatsii i interpolyatsii, ed. A. Yu. Kuznetsov, VTs SO AN SSSR, Novosibirsk, 1981, 148–153 | MR

[3] Subbotin Yu. N., “Zavisimost otsenok approksimatsii interpolyatsionnymi polinomami pyatoi stepeni ot geometricheskikh kharakteristik treugolnika”, Trudy Instituta matematiki i mekhaniki UrO RAN, 2, 1992, 110–119 | MR | Zbl

[4] Subbotin Yu. N., “Novyi kubicheskii element v MKE”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11, no. 2, 2005, 120–130 | MR | Zbl

[5] Baidakova N. V., “On some interpolation process by polynomials of degree $4m+1$ on the triangle”, Rus. J. Numer. Anal. Math. Modelling, 14:2 (1999), 87–107 | DOI | MR | Zbl

[6] Baidakova N. V., “Ob odnom sposobe ermitovoi interpolyatsii mnogochlenami tretei stepeni na treugolnike”, Trudy Instituta matematiki i mekhaniki UrO RAN, 11, no. 2, 2005, 47–52 | MR | Zbl

[7] Latypova N. V., “Pogreshnost approksimatsii mnogochlenami stepeni $4k+3$ na treugolnike”, Tr. Mezhdunar. shk. S. B. Stechkina po teorii funktsii, Izd-vo UrO RAN, Ekaterinburg, 1999, 128–137

[8] Latypova N. V., “Otsenki pogreshnosti approksimatsii mnogochlenami stepeni $4k+3$ na treugolnike”, Trudy Instituta matematiki i mekhaniki UrO RAN, 8, no. 1, 2002, 203–226 | MR | Zbl

[9] Latypova N. V., “Pogreshnost kusochno-kubicheskoi interpolyatsii na treugolnike”, Vestn. Udm. un-ta. Matematika, 2003, no. 1, 3–18

[10] Latypova N. V., “Pogreshnost kusochno-parabolicheskoi interpolyatsii na treugolnike”, Vestn. Udm. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 3, 91–97

[11] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Fizmatgiz, M., 1962, 464 pp. | MR