Voir la notice du chapitre de livre
Keywords: piecewise cubic polynomial, finite element method.
@article{TIMM_2011_17_3_a22,
author = {N. V. Latypova},
title = {Independence of error estimates of interpolation by cubic polynomials from the angles of a~triangle},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {233--241},
year = {2011},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a22/}
}
TY - JOUR AU - N. V. Latypova TI - Independence of error estimates of interpolation by cubic polynomials from the angles of a triangle JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 233 EP - 241 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a22/ LA - ru ID - TIMM_2011_17_3_a22 ER -
N. V. Latypova. Independence of error estimates of interpolation by cubic polynomials from the angles of a triangle. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 233-241. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a22/
[1] Ciarlet P. G., Raviart P. A., “General Lagrange and Hermite interpolation in $\mathbb R^n$ with applications to finite element methods”, Arch. Rat. Mech. and Anal., 46:3 (1972), 177–199 | DOI | MR | Zbl
[2] Subbotin Yu. N., “Mnogomernaya kusochno-polinomialnaya interpolyatsiya”, Metody approksimatsii i interpolyatsii, ed. A. Yu. Kuznetsov, VTs SO AN SSSR, Novosibirsk, 1981, 148–153 | MR
[3] Subbotin Yu. N., “Zavisimost otsenok approksimatsii interpolyatsionnymi polinomami pyatoi stepeni ot geometricheskikh kharakteristik treugolnika”, Trudy Instituta matematiki i mekhaniki UrO RAN, 2, 1992, 110–119 | MR | Zbl
[4] Subbotin Yu. N., “Novyi kubicheskii element v MKE”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11, no. 2, 2005, 120–130 | MR | Zbl
[5] Baidakova N. V., “On some interpolation process by polynomials of degree $4m+1$ on the triangle”, Rus. J. Numer. Anal. Math. Modelling, 14:2 (1999), 87–107 | DOI | MR | Zbl
[6] Baidakova N. V., “Ob odnom sposobe ermitovoi interpolyatsii mnogochlenami tretei stepeni na treugolnike”, Trudy Instituta matematiki i mekhaniki UrO RAN, 11, no. 2, 2005, 47–52 | MR | Zbl
[7] Latypova N. V., “Pogreshnost approksimatsii mnogochlenami stepeni $4k+3$ na treugolnike”, Tr. Mezhdunar. shk. S. B. Stechkina po teorii funktsii, Izd-vo UrO RAN, Ekaterinburg, 1999, 128–137
[8] Latypova N. V., “Otsenki pogreshnosti approksimatsii mnogochlenami stepeni $4k+3$ na treugolnike”, Trudy Instituta matematiki i mekhaniki UrO RAN, 8, no. 1, 2002, 203–226 | MR | Zbl
[9] Latypova N. V., “Pogreshnost kusochno-kubicheskoi interpolyatsii na treugolnike”, Vestn. Udm. un-ta. Matematika, 2003, no. 1, 3–18
[10] Latypova N. V., “Pogreshnost kusochno-parabolicheskoi interpolyatsii na treugolnike”, Vestn. Udm. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2009, no. 3, 91–97
[11] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Fizmatgiz, M., 1962, 464 pp. | MR