The form of an extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 225-232
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider an extremal problem for continuous functions that are nonpositive on a closed interval and can be represented by series in Legendre polynomials with nonnegative coefficients. This problem arises from the Delsarte method of finding an upper bound for the kissing number in the three-dimensional Euclidean space. We prove that all extremal functions in this problem are algebraic polynomials and the degree $d$ of each polynomial satisfies the inequalities $27\leq d1450$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Delsarte method, infinite-dimensional linear programming, Gegenbauer polynomials, kissing numbers.
                    
                  
                
                
                @article{TIMM_2011_17_3_a21,
     author = {N. A. Kuklin},
     title = {The form of an extremal function in the {Delsarte} problem of finding an upper bound for the kissing number in the three-dimensional space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {225--232},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a21/}
}
                      
                      
                    TY - JOUR AU - N. A. Kuklin TI - The form of an extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 225 EP - 232 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a21/ LA - ru ID - TIMM_2011_17_3_a21 ER -
%0 Journal Article %A N. A. Kuklin %T The form of an extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space %J Trudy Instituta matematiki i mehaniki %D 2011 %P 225-232 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a21/ %G ru %F TIMM_2011_17_3_a21
N. A. Kuklin. The form of an extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 225-232. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a21/
