The form of an extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 225-232
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an extremal problem for continuous functions that are nonpositive on a closed interval and can be represented by series in Legendre polynomials with nonnegative coefficients. This problem arises from the Delsarte method of finding an upper bound for the kissing number in the three-dimensional Euclidean space. We prove that all extremal functions in this problem are algebraic polynomials and the degree $d$ of each polynomial satisfies the inequalities $27\leq d1450$.
Keywords: Delsarte method, infinite-dimensional linear programming, Gegenbauer polynomials, kissing numbers.
@article{TIMM_2011_17_3_a21,
     author = {N. A. Kuklin},
     title = {The form of an extremal function in the {Delsarte} problem of finding an upper bound for the kissing number in the three-dimensional space},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {225--232},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a21/}
}
TY  - JOUR
AU  - N. A. Kuklin
TI  - The form of an extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 225
EP  - 232
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a21/
LA  - ru
ID  - TIMM_2011_17_3_a21
ER  - 
%0 Journal Article
%A N. A. Kuklin
%T The form of an extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 225-232
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a21/
%G ru
%F TIMM_2011_17_3_a21
N. A. Kuklin. The form of an extremal function in the Delsarte problem of finding an upper bound for the kissing number in the three-dimensional space. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 225-232. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a21/

[1] Arestov V. V., Babenko A. G., “O skheme Delsarta otsenki kontaktnykh chisel”, Tr. MIAN, 219, 1997, 44–73 | MR | Zbl

[2] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 896 pp.

[3] Delsart F., Algebraicheskii podkhod k skhemam otnoshenii teorii kodirovaniya, Mir, M., 1976, 136 pp. | MR

[4] Kabatyanskii G. A., Levenshtein V. I., “O granitsakh dlya upakovok na sfere i v prostranstve”, Problemy peredachi informatsii, 14:1 (1978), 3–25 | MR | Zbl

[5] Konvei Dzh., Sloen N., Upakovki sharov, reshetki i gruppy, v. 1, 2, Mir, M., 1990, 791 pp.

[6] Levenshtein V. I., “Granitsy dlya upakovok metricheskikh prostranstv i nekotorye ikh prilozheniya”, Problemy kibernetiki, 40, 1983, 44–110

[7] Levenshtein V. I., “O granitsakh dlya upakovok v $n$-mernom evklidovom prostranstve”, Dokl. AN SSSR, 245:6 (1979), 1299–1303 | MR

[8] Musin O. R., “Problema dvadtsati pyati sfer”, Uspekhi mat. nauk, 58:4(352) (2003), 153–154 | MR | Zbl

[9] Musin O. R., “The kissing problem in three dimensions”, Discrete Comput. Geom., 35:3 (2006), 375–384 | DOI | MR | Zbl

[10] Musin O. R., “The kissing number in four dimensions”, Ann. Math., 168:1 (2008), 1–32 | DOI | MR | Zbl

[11] Prasolov V. V., Mnogochleny, Izd-vo Mosk. Tsentra nepreryvn. mat. obrazovaniya, M., 2003, 336 pp.

[12] Sidelnikov V. M., “Ob ekstremalnykh mnogochlenakh, ispolzuemykh pri otsenkakh moschnosti koda”, Problemy peredachi informatsii, 16:3 (1980), 17–30 | MR | Zbl

[13] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, 3-e izd., pererab. i dop., Fizmatlit, M., 2005, 480 pp. | MR

[14] Shtrom D. V., “Metod Delsarta v zadache o kontaktnykh chislakh evklidovykh prostranstv bolshikh razmernostei”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8, no. 2, 2002, 162–189 | MR

[15] Yudin V. A., “Minimum potentsialnoi energii tochechnoi sistemy zaryadov”, Diskretnaya matematika, 4:2 (1992), 115–121 | MR | Zbl

[16] Anderson E. J., Nash P., Linear programming in infinite-dimensional spaces: Theory and applications, Wiley Intersci. ser. in discrete mathematics and optimization, Wiley, Chichester etc., 1987, xii+172 pp. | MR

[17] Delsarte Ph., “Bounds for unrestricted codes, by linear programming”, Philips Res. Rep., 27 (1972), 272–289 | MR | Zbl

[18] Mittelmann H. D., Vallentin F., “High-accuracy semidefinite programming bounds for kissing numbers”, Experiment. Math., 19:2 (2010), 174–178 | DOI | MR | Zbl

[19] Odlyzko A. M., Sloane N. J. A., “New bounds on the number of unit spheres that can touch a unit sphere in $n$ dimensions”, J. Combinatorial Theory. Ser. A, 26:2 (1979), 210–214 | DOI | MR | Zbl

[20] Schutte K., van der Waerden B. L., “Das Problem der dreizehn Kugeln”, Math. Ann., 125 (1953), 325–334 | DOI | MR