Voir la notice du chapitre de livre
@article{TIMM_2011_17_3_a20,
author = {A. A. Koshelev},
title = {The best $L_p$ approximation of the {Laplace} operator by linear bounded operators in the classes of functions of two and three variables},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {217--224},
year = {2011},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/}
}
TY - JOUR AU - A. A. Koshelev TI - The best $L_p$ approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 217 EP - 224 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/ LA - ru ID - TIMM_2011_17_3_a20 ER -
%0 Journal Article %A A. A. Koshelev %T The best $L_p$ approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables %J Trudy Instituta matematiki i mehaniki %D 2011 %P 217-224 %V 17 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/ %G ru %F TIMM_2011_17_3_a20
A. A. Koshelev. The best $L_p$ approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 217-224. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/
[1] Shilov G. E., Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965, 328 pp. | MR
[2] Stechkin S. B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | MR | Zbl
[3] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6(312) (1996), 89–124 | MR | Zbl
[4] Arestov V. V., Gabushin V. N., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi”, Izv. vuzov. Matematika, 1995, no. 11, 42–68 | MR | Zbl
[5] Kounchev O., “Extremizers for the multivariate Landau–Kolmogorov inequality”, Multivariate approximation, Recent trends and results, 101, Akademie Verlag, Berlin, 1997, 123–132 | MR | Zbl
[6] Koshelev A. A., “Nailuchshee priblizhenie operatora Laplasa lineinymi ogranichennymi operatorami v prostranstve $L_p$”, Izv. vuzov. Matematika, 2011, no. 6, 63–74