The best $L_p$ approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 217-224
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Close two-sided estimates are obtained for the best approximation in the space $L_p(\mathbb R^m)$, $m=2,3$, $1\le p\le\infty$, of the Laplace operator by linear bounded operators in the class of functions for which the square of the Laplace operator belongs to the space $L_p(\mathbb R^m)$. We estimate the best constant in the corresponding Kolmogorov inequality and the error of the optimal recovery of the values of the Laplace operator on functions from this class given with an error. We write an operator whose deviation from the Laplace operator is close to the best.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Laplace operator, approximation of unbounded operators by bounded operators, Kolmogorov inequality, optimal recovery.
                    
                  
                
                
                @article{TIMM_2011_17_3_a20,
     author = {A. A. Koshelev},
     title = {The best $L_p$ approximation of the {Laplace} operator by linear bounded operators in the classes of functions of two and three variables},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {217--224},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/}
}
                      
                      
                    TY - JOUR AU - A. A. Koshelev TI - The best $L_p$ approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 217 EP - 224 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/ LA - ru ID - TIMM_2011_17_3_a20 ER -
%0 Journal Article %A A. A. Koshelev %T The best $L_p$ approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables %J Trudy Instituta matematiki i mehaniki %D 2011 %P 217-224 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/ %G ru %F TIMM_2011_17_3_a20
A. A. Koshelev. The best $L_p$ approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 217-224. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/
