The best $L_p$ approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 217-224

Voir la notice de l'article provenant de la source Math-Net.Ru

Close two-sided estimates are obtained for the best approximation in the space $L_p(\mathbb R^m)$, $m=2,3$, $1\le p\le\infty$, of the Laplace operator by linear bounded operators in the class of functions for which the square of the Laplace operator belongs to the space $L_p(\mathbb R^m)$. We estimate the best constant in the corresponding Kolmogorov inequality and the error of the optimal recovery of the values of the Laplace operator on functions from this class given with an error. We write an operator whose deviation from the Laplace operator is close to the best.
Keywords: Laplace operator, approximation of unbounded operators by bounded operators, Kolmogorov inequality, optimal recovery.
@article{TIMM_2011_17_3_a20,
     author = {A. A. Koshelev},
     title = {The best $L_p$ approximation of the {Laplace} operator by linear bounded operators in the classes of functions of two and three variables},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {217--224},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/}
}
TY  - JOUR
AU  - A. A. Koshelev
TI  - The best $L_p$ approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 217
EP  - 224
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/
LA  - ru
ID  - TIMM_2011_17_3_a20
ER  - 
%0 Journal Article
%A A. A. Koshelev
%T The best $L_p$ approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 217-224
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/
%G ru
%F TIMM_2011_17_3_a20
A. A. Koshelev. The best $L_p$ approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 217-224. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/