The best $L_p$ approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 217-224
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Close two-sided estimates are obtained for the best approximation in the space $L_p(\mathbb R^m)$, $m=2,3$, $1\le p\le\infty$, of the Laplace operator by linear bounded operators in the class of functions for which the square of the Laplace operator belongs to the space $L_p(\mathbb R^m)$. We estimate the best constant in the corresponding Kolmogorov inequality and the error of the optimal recovery of the values of the Laplace operator on functions from this class given with an error. We write an operator whose deviation from the Laplace operator is close to the best.
Keywords: Laplace operator, approximation of unbounded operators by bounded operators, Kolmogorov inequality, optimal recovery.
@article{TIMM_2011_17_3_a20,
     author = {A. A. Koshelev},
     title = {The best $L_p$ approximation of the {Laplace} operator by linear bounded operators in the classes of functions of two and three variables},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {217--224},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/}
}
TY  - JOUR
AU  - A. A. Koshelev
TI  - The best $L_p$ approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 217
EP  - 224
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/
LA  - ru
ID  - TIMM_2011_17_3_a20
ER  - 
%0 Journal Article
%A A. A. Koshelev
%T The best $L_p$ approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 217-224
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/
%G ru
%F TIMM_2011_17_3_a20
A. A. Koshelev. The best $L_p$ approximation of the Laplace operator by linear bounded operators in the classes of functions of two and three variables. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 217-224. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a20/

[1] Shilov G. E., Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965, 328 pp. | MR

[2] Stechkin S. B., “Nailuchshee priblizhenie lineinykh operatorov”, Mat. zametki, 1:2 (1967), 137–148 | MR | Zbl

[3] Arestov V. V., “Priblizhenie neogranichennykh operatorov ogranichennymi i rodstvennye ekstremalnye zadachi”, Uspekhi mat. nauk, 51:6(312) (1996), 89–124 | MR | Zbl

[4] Arestov V. V., Gabushin V. N., “Nailuchshee priblizhenie neogranichennykh operatorov ogranichennymi”, Izv. vuzov. Matematika, 1995, no. 11, 42–68 | MR | Zbl

[5] Kounchev O., “Extremizers for the multivariate Landau–Kolmogorov inequality”, Multivariate approximation, Recent trends and results, 101, Akademie Verlag, Berlin, 1997, 123–132 | MR | Zbl

[6] Koshelev A. A., “Nailuchshee priblizhenie operatora Laplasa lineinymi ogranichennymi operatorami v prostranstve $L_p$”, Izv. vuzov. Matematika, 2011, no. 6, 63–74