On problems of putting a~carrier rocket into specified elliptic orbits
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 201-216
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider problems of an optimal program control of a carrier rocket of Soyuz-2 type aimed at placing a maximum mass of the carrier rocket into specified near-earth elliptic orbits and to a fixed point of an orbit as well as the problem of estimating the set of reachable points of an orbit. Numerical algorithms are developed for finding admissible controls. The algorithms are based on solving auxiliary problems of optimal control with the use of explicit formulas for parameters of the orbit and of the conjugate system. The question of the possibility of improving the base controls constructed at the Semikhatov Research and Production Association of Automation is investigated. As a result of extensive numerical modeling, it has been confirmed that the base controls are close to optimal ones and pointwise internal estimates for reachable sets have been found.
Keywords:
optimal control, osculating orbit, numerical methods, reachable sets.
@article{TIMM_2011_17_3_a19,
author = {E. K. Kostousova and V. I. Pochinskii},
title = {On problems of putting a~carrier rocket into specified elliptic orbits},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {201--216},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a19/}
}
TY - JOUR AU - E. K. Kostousova AU - V. I. Pochinskii TI - On problems of putting a~carrier rocket into specified elliptic orbits JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 201 EP - 216 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a19/ LA - ru ID - TIMM_2011_17_3_a19 ER -
E. K. Kostousova; V. I. Pochinskii. On problems of putting a~carrier rocket into specified elliptic orbits. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 201-216. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a19/