On problems of putting a carrier rocket into specified elliptic orbits
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 201-216
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider problems of an optimal program control of a carrier rocket of Soyuz-2 type aimed at placing a maximum mass of the carrier rocket into specified near-earth elliptic orbits and to a fixed point of an orbit as well as the problem of estimating the set of reachable points of an orbit. Numerical algorithms are developed for finding admissible controls. The algorithms are based on solving auxiliary problems of optimal control with the use of explicit formulas for parameters of the orbit and of the conjugate system. The question of the possibility of improving the base controls constructed at the Semikhatov Research and Production Association of Automation is investigated. As a result of extensive numerical modeling, it has been confirmed that the base controls are close to optimal ones and pointwise internal estimates for reachable sets have been found.
Keywords: optimal control, osculating orbit, numerical methods, reachable sets.
@article{TIMM_2011_17_3_a19,
     author = {E. K. Kostousova and V. I. Pochinskii},
     title = {On problems of putting a~carrier rocket into specified elliptic orbits},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {201--216},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a19/}
}
TY  - JOUR
AU  - E. K. Kostousova
AU  - V. I. Pochinskii
TI  - On problems of putting a carrier rocket into specified elliptic orbits
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 201
EP  - 216
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a19/
LA  - ru
ID  - TIMM_2011_17_3_a19
ER  - 
%0 Journal Article
%A E. K. Kostousova
%A V. I. Pochinskii
%T On problems of putting a carrier rocket into specified elliptic orbits
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 201-216
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a19/
%G ru
%F TIMM_2011_17_3_a19
E. K. Kostousova; V. I. Pochinskii. On problems of putting a carrier rocket into specified elliptic orbits. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 201-216. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a19/

[1] Appazov R. F., Sytin O. G., Metody proektirovaniya traektorii nositelei i sputnikov Zemli, Nauka, M., 1987, 440 pp.

[2] Braison A., Kho Yu-shi, Prikladnaya teoriya optimalnogo upravleniya, Mir, M., 1972, 544 pp.

[3] Bronshtein I. N., Semendyaev K. A., Spravochnik po matematike dlya inzhenerov i uchaschikhsya vtuzov, Nauka, M., 1986, 544 pp.

[4] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980, 520 pp. | MR

[5] T. D. Dumsheva, V. B. Kostousov, E. K. Kostousova, V. I. Pochinskii, “Issledovanie zadachi optimalnogo vyvedeniya poleznoi nagruzki na zadannuyu ellipticheskuyu orbitu”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16, no. 5, 2010, 57–65

[6] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR

[7] Lyubushin A. A., Chernousko F. L., “Metod posledovatelnykh priblizhenii dlya raccheta optimalnogo upravleniya”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 147–159 | Zbl

[8] Mazgalin D. V., “Postroenie sposoba upravleniya raketoi-nositelem pri ispolzovanii v kachestve upravleniya programmnykh uglovykh skorostei razvorotov”, Informatsionno-upravlyayuschie sistemy, 2010, no. 3(46), 21–29

[9] Mazgalin D. V., Pochinskii V. I., “Metod opredeleniya azimuta puska i programmy ugla tangazha na atmosfernom aktivnom uchastke poleta RN”, Vestn. YuUrGU, 2010, no. 22(198), Kompyuternye tekhnologii, upravlenie i radioelektronika, No 12, 47–50

[10] V. S. Orlov, B. T. Polyak, V. A. Rebrii, N. V. Tretyakov, “Opyt resheniya zadach optimalnogo upravleniya”, Vychislitelnye metody i programmirovanie: sb. st., 9, Izd-vo MGU, M., 1967, 179–192

[11] Okhotsimskii D. E, Sikharulidze Yu. G., Osnovy mekhaniki kosmicheskogo poleta, Nauka, M., 1990, 448 pp.

[12] Parametry obschego zemnogo ellipsoida i gravitatsionnogo polya Zemli, (Parametry Zemli 1990 goda), RIO TS VS RF, M., 1991, 37 pp.

[13] Polyak B. T., “Metod sopryazhennykh gradientov v zadachakh na ekstremum”, Zhurn. vychisl. matematiki i mat. fiziki, 9:4 (1969), 807–821 | MR | Zbl

[14] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978, 488 pp. | MR | Zbl