On the reconstruction of functions by the values of the $n$th differences with step $1/n$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 178-185
Voir la notice du chapitre de livre
We study the problem of the reconstruction of functions by the values of the $n$th differences with step $1/n$ taken at the point $0$. The problem is solved for functions that are analytic in special domains containing the interval $[0,1]$.
Keywords:
analytic function, basis in the space of analytic functions.
@article{TIMM_2011_17_3_a17,
author = {S. V. Konyagin and A. Yu. Popov},
title = {On the reconstruction of functions by the values of the $n$th differences with step~$1/n$},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {178--185},
year = {2011},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a17/}
}
TY - JOUR AU - S. V. Konyagin AU - A. Yu. Popov TI - On the reconstruction of functions by the values of the $n$th differences with step $1/n$ JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 178 EP - 185 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a17/ LA - ru ID - TIMM_2011_17_3_a17 ER -
S. V. Konyagin; A. Yu. Popov. On the reconstruction of functions by the values of the $n$th differences with step $1/n$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 178-185. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a17/
[1] Markushevich A. I., Izbrannye glavy teorii analiticheskikh funktsii, Nauka, M., 1976, 192 pp. | MR | Zbl
[2] Edvards R., Funktsionalnyi analiz, Mir, M., 1969, 1072 pp.
[3] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatgiz, M., 1962, 808 pp.
[4] Brutman L., Passow E., “On a divided differences problem”, East J. Approx., 3:4 (1997), 495–501 | MR | Zbl
[5] Kazmin Yu. A., “Teorema o bazisnosti blizkikh sistem i ee prilozheniya”, Mat. zametki, 44:1 (1988), 80–88 | MR | Zbl