Sharp Lebesgue constants for interpolatory $\mathcal L$-splines of a~formally self-adjoint differential operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 169-177

Voir la notice de l'article provenant de la source Math-Net.Ru

The Lebesgue function is constructed and sharp Lebesgue constants are found for both interpolatory periodic and interpolatory bounded $\mathcal L$-splines of a formally self-adjoint differential operator of arbitrary order such that at least one of the roots of its characteristic polynomial is zero.
Keywords: $\mathcal L$-spline, formally self-adjoint differential operator.
Mots-clés : sharp Lebesgue constants, Lebesgue function
@article{TIMM_2011_17_3_a16,
     author = {V. A. Kim},
     title = {Sharp {Lebesgue} constants for interpolatory $\mathcal L$-splines of a~formally self-adjoint differential operator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {169--177},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/}
}
TY  - JOUR
AU  - V. A. Kim
TI  - Sharp Lebesgue constants for interpolatory $\mathcal L$-splines of a~formally self-adjoint differential operator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 169
EP  - 177
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/
LA  - ru
ID  - TIMM_2011_17_3_a16
ER  - 
%0 Journal Article
%A V. A. Kim
%T Sharp Lebesgue constants for interpolatory $\mathcal L$-splines of a~formally self-adjoint differential operator
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 169-177
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/
%G ru
%F TIMM_2011_17_3_a16
V. A. Kim. Sharp Lebesgue constants for interpolatory $\mathcal L$-splines of a~formally self-adjoint differential operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 169-177. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/