Sharp Lebesgue constants for interpolatory $\mathcal L$-splines of a formally self-adjoint differential operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 169-177
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Lebesgue function is constructed and sharp Lebesgue constants are found for both interpolatory periodic and interpolatory bounded $\mathcal L$-splines of a formally self-adjoint differential operator of arbitrary order such that at least one of the roots of its characteristic polynomial is zero.
Keywords: $\mathcal L$-spline, formally self-adjoint differential operator.
Mots-clés : sharp Lebesgue constants, Lebesgue function
@article{TIMM_2011_17_3_a16,
     author = {V. A. Kim},
     title = {Sharp {Lebesgue} constants for interpolatory $\mathcal L$-splines of a~formally self-adjoint differential operator},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {169--177},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/}
}
TY  - JOUR
AU  - V. A. Kim
TI  - Sharp Lebesgue constants for interpolatory $\mathcal L$-splines of a formally self-adjoint differential operator
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 169
EP  - 177
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/
LA  - ru
ID  - TIMM_2011_17_3_a16
ER  - 
%0 Journal Article
%A V. A. Kim
%T Sharp Lebesgue constants for interpolatory $\mathcal L$-splines of a formally self-adjoint differential operator
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 169-177
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/
%G ru
%F TIMM_2011_17_3_a16
V. A. Kim. Sharp Lebesgue constants for interpolatory $\mathcal L$-splines of a formally self-adjoint differential operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 169-177. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/

[1] Richards F., “Best bounds for the uniform periodic spline interpolation operator”, J. Approx. Theory, 7:3 (1973), 302–317 | DOI | MR | Zbl

[2] Tzimbalario J., “Lebesgue constants for cardinal $\mathcal L$-spline interpolation”, Can. J. Math., 29:2 (1977), 441–448 | DOI | MR | Zbl

[3] Morsche H. G. ter., “On the Lebesgue constants for cardinal $\mathcal L$-spline interpolation”, J. Approx. Theory, 45:3 (1985), 232–246 | DOI | MR | Zbl

[4] Kim V. A., “Tochnye konstanty Lebega dlya interpolyatsionnykh $\mathcal L$-splainov tretego poryadka”, Mat. zametki, 84:1 (2008), 59–68 | MR | Zbl

[5] Kim V. A., “Tochnye konstanty Lebega dlya interpolyatsionnykh ogranichennykh $\mathcal L$-splainov tretego poryadka”, Sib. mat. zhurn., 51:2 (2010), 330–341 | MR

[6] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–172 | MR | Zbl

[7] Micchelli C. A., “Cardinal $\mathcal L$-splines”, Studies in spline functions and approximation theory, Acad. press, New York, 1976, 203–250 | MR

[8] Subbotin Yu. N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN, 78, 1965, 24–42 | MR | Zbl

[9] Karlin S., Total positivity, v. 1, Stanford Univ. Press, Stanford, 1968, 576 pp. | MR