Voir la notice du chapitre de livre
Mots-clés : sharp Lebesgue constants, Lebesgue function
@article{TIMM_2011_17_3_a16,
author = {V. A. Kim},
title = {Sharp {Lebesgue} constants for interpolatory $\mathcal L$-splines of a~formally self-adjoint differential operator},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {169--177},
year = {2011},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/}
}
TY - JOUR AU - V. A. Kim TI - Sharp Lebesgue constants for interpolatory $\mathcal L$-splines of a formally self-adjoint differential operator JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 169 EP - 177 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/ LA - ru ID - TIMM_2011_17_3_a16 ER -
%0 Journal Article %A V. A. Kim %T Sharp Lebesgue constants for interpolatory $\mathcal L$-splines of a formally self-adjoint differential operator %J Trudy Instituta matematiki i mehaniki %D 2011 %P 169-177 %V 17 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/ %G ru %F TIMM_2011_17_3_a16
V. A. Kim. Sharp Lebesgue constants for interpolatory $\mathcal L$-splines of a formally self-adjoint differential operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 169-177. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/
[1] Richards F., “Best bounds for the uniform periodic spline interpolation operator”, J. Approx. Theory, 7:3 (1973), 302–317 | DOI | MR | Zbl
[2] Tzimbalario J., “Lebesgue constants for cardinal $\mathcal L$-spline interpolation”, Can. J. Math., 29:2 (1977), 441–448 | DOI | MR | Zbl
[3] Morsche H. G. ter., “On the Lebesgue constants for cardinal $\mathcal L$-spline interpolation”, J. Approx. Theory, 45:3 (1985), 232–246 | DOI | MR | Zbl
[4] Kim V. A., “Tochnye konstanty Lebega dlya interpolyatsionnykh $\mathcal L$-splainov tretego poryadka”, Mat. zametki, 84:1 (2008), 59–68 | MR | Zbl
[5] Kim V. A., “Tochnye konstanty Lebega dlya interpolyatsionnykh ogranichennykh $\mathcal L$-splainov tretego poryadka”, Sib. mat. zhurn., 51:2 (2010), 330–341 | MR
[6] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–172 | MR | Zbl
[7] Micchelli C. A., “Cardinal $\mathcal L$-splines”, Studies in spline functions and approximation theory, Acad. press, New York, 1976, 203–250 | MR
[8] Subbotin Yu. N., “O svyazi mezhdu konechnymi raznostyami i sootvetstvuyuschimi proizvodnymi”, Tr. MIAN, 78, 1965, 24–42 | MR | Zbl
[9] Karlin S., Total positivity, v. 1, Stanford Univ. Press, Stanford, 1968, 576 pp. | MR