Sharp Lebesgue constants for interpolatory $\mathcal L$-splines of a~formally self-adjoint differential operator
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 169-177
Voir la notice de l'article provenant de la source Math-Net.Ru
The Lebesgue function is constructed and sharp Lebesgue constants are found for both interpolatory periodic and interpolatory bounded $\mathcal L$-splines of a formally self-adjoint differential operator of arbitrary order such that at least one of the roots of its characteristic polynomial is zero.
Keywords:
$\mathcal L$-spline, formally self-adjoint differential operator.
Mots-clés : sharp Lebesgue constants, Lebesgue function
Mots-clés : sharp Lebesgue constants, Lebesgue function
@article{TIMM_2011_17_3_a16,
author = {V. A. Kim},
title = {Sharp {Lebesgue} constants for interpolatory $\mathcal L$-splines of a~formally self-adjoint differential operator},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {169--177},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/}
}
TY - JOUR AU - V. A. Kim TI - Sharp Lebesgue constants for interpolatory $\mathcal L$-splines of a~formally self-adjoint differential operator JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 169 EP - 177 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/ LA - ru ID - TIMM_2011_17_3_a16 ER -
%0 Journal Article %A V. A. Kim %T Sharp Lebesgue constants for interpolatory $\mathcal L$-splines of a~formally self-adjoint differential operator %J Trudy Instituta matematiki i mehaniki %D 2011 %P 169-177 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/ %G ru %F TIMM_2011_17_3_a16
V. A. Kim. Sharp Lebesgue constants for interpolatory $\mathcal L$-splines of a~formally self-adjoint differential operator. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 169-177. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a16/