Voir la notice du chapitre de livre
@article{TIMM_2011_17_3_a15,
author = {E. E. Ivanko},
title = {Sufficient stability conditions in the traveling salesman problem},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {155--168},
year = {2011},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a15/}
}
E. E. Ivanko. Sufficient stability conditions in the traveling salesman problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 155-168. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a15/
[1] Emelichev V. A., Kuzmin K. G., Leonovich A. M., “Ustoichivost v vektornykh kombinatornykh zadachakh optimizatsii”, Avtomatika i telemekhanika, 2004, no. 2, 79–92 | MR | Zbl
[2] Sotscov Yu. N., Leontev V. K., Gordeev E., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58 (1995), 169–190 | DOI | MR
[3] Lebedeva T. T., Semenova N. V., Sergienko T. I., “Ustoichivost vektornykh zadach tselochislennoi optimizatsii: vzaimosvyaz s ustoichivostyu mnozhestv optimalnykh i neoptimalnykh reshenii”, Kibernetika i sistemnyi analiz, 41:4 (2005), 89–100 | MR
[4] Devyaterikova M. V., Kolokolov A. A., “Ob ustoichivosti nekotorykh algoritmov tselochislennogo programmirovaniya”, Izv. vuzov. Matematika, 2003, no. 12, 41–48 | MR | Zbl
[5] Poort E. S., Aspects of sensitivity analysis for the traveling salesman problem, PhD dissertation, University of Groningen, Groningen, 1997, 191 pp.
[6] Leontev V. K., “Ustoichivost zadachi kommivoyazhera”, Zhurn. vychisl. matematiki i mat. fiziki, 15:5 (1975), 1298–1309 | MR | Zbl
[7] M. Libura, van der E. S. Poort, G. Sierksma, J. A. Veen, “Stability aspects of the traveling salesman problem based on k-best solutions”, Discrete Appl. Math., 87 (1998), 159–185 | DOI | MR | Zbl
[8] Ivanko E. E., “Dostatochnye usloviya ustoichivosti optimalnogo marshruta v zadache kommivoyazhera pri dobavlenii novoi vershiny i pri udalenii suschestvuyuschei”, Vestn. Udm. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2010, no. 1, 48–57
[9] Concorde TSP Solver http://www.tsp.gatech.edu/concorde/index.html