A version of the Turan problem for positive definite functions of several variables
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 136-154
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G_m(\mathbb B)$ be the class of functions of $m$ variables with support in the unit ball $\mathbb B$ centered at the origin of the space $\mathbb R^m$, continuous on the space $\mathbb R^m$, normed by the condition $f(0)=1,$ and having a nonnegative Fourier transform. In this paper, we study the problem of finding the maximum value $\Phi_m(a)$ of normed integrals of functions from the class $G_m(\mathbb B)$ over the sphere $\mathbb S_a$ of radius $a$, $0$, centered at the origin. It is proved that we may consider spherically symmetric functions only. The existence of an extremal function is proved and a presentation of such a function as the self-convolution of a radial function is obtained. An integral equation is written for a solution of the problem for any $m\ge3$. The values $\Phi_3(a)$ are obtained for $1/3\le a1$.
Keywords: Turan problem, positive definite functions, multidimensional functions.
@article{TIMM_2011_17_3_a14,
     author = {A. V. Efimov},
     title = {A version of the {Turan} problem for positive definite functions of several variables},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {136--154},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a14/}
}
TY  - JOUR
AU  - A. V. Efimov
TI  - A version of the Turan problem for positive definite functions of several variables
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 136
EP  - 154
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a14/
LA  - ru
ID  - TIMM_2011_17_3_a14
ER  - 
%0 Journal Article
%A A. V. Efimov
%T A version of the Turan problem for positive definite functions of several variables
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 136-154
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a14/
%G ru
%F TIMM_2011_17_3_a14
A. V. Efimov. A version of the Turan problem for positive definite functions of several variables. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 136-154. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a14/

[1] Andreev N. N., “Ekstremalnaya zadacha dlya periodicheskikh funktsii s malym nositelem”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 1997, no. 1, 29–32 | Zbl

[2] Arestov V. V., Berdysheva E. E., “Zadacha Turana dlya polozhitelno opredelennykh funktsii s nositelem v shestiugolnike”, Trudy Instituta matematiki i mekhaniki UrO RAN, 7, no. 1, 2001, 21–29

[3] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961, 936 pp. | MR

[4] Gorbachev D. V., “Ekstremalnaya zadacha dlya periodicheskikh funktsii s nositelem v share”, Mat. zametki, 69:3 (2001), 346–352 | MR | Zbl

[5] Deikalova M. V., “Funktsional Taikova v prostranstve algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Mat. zametki, 84:4 (2008), 532–551 | MR | Zbl

[6] Ivanov V. I., “O zadachakh Turana i Delsarta dlya periodicheskikh polozhitelno opredelennykh funktsii”, Mat. zametki, 80:6 (2006), 934–939 | MR | Zbl

[7] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965, 520 pp. | MR | Zbl

[8] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 333 pp. | Zbl

[9] Stechkin S. B., “Odna ekstremalnaya zadacha dlya trigonometricheskikh ryadov s neotritsatelnymi koeffitsientami”, Acta Math. Acad. Sci. Hung., 23:3–4 (1972), 289–291 | Zbl

[10] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, Ch. 2, Fizmatgiz, M., 1963, 515 pp.

[11] Shilov G. E., Matematicheskii analiz, Nauka, M., 1965, 327 pp.

[12] Arestov V. V., Berdysheva E. E., Berens H., “On pointwise Turans problem for positive definite functions”, East J. Approx., 9:1 (2003), 31–42 | MR | Zbl

[13] Arestov V. V., Berdysheva E. E., “The Turan problem for a class of polytopes”, East J. Approx., 8:3 (2002), 381–388 | MR | Zbl

[14] Boas R. P. (Jr.), Kac M., “Inequalities for Fourier transforms of positive functions”, Duke Math. J., 12:1 (1945), 189–206 | DOI | MR | Zbl

[15] Ehm W., Gneiting T., Richards D., “Convolution roots of radial positive definite functions with compact support”, Trans. Amer. Math. Soc., 356 (2004), 4655–4685 | DOI | MR | Zbl

[16] Revesz S. G., Turans extremal problem on locally compact abelian groups, arXiv: 0904.1824v1

[17] Rudin W., “An extension theorem for positive-definite functions”, Duke Math. J., 37 (1970), 49–53 | DOI | MR | Zbl