Several extremal approximation problems for the characteristic function of a spherical layer
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 122-135
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We discuss three related extremal problems on the set $\mathcal P_{n,m}$ of algebraic polynomials of a given degree $n$ on the unit sphere $\mathbb S^{m-1}$ of the Euclidean space $\mathbb R^m$ of dimension $m\ge2$. (1) The norm of the functional $F(\eta)=F_hP_n=\int_{\mathbb G(\eta)}P_n(x)dx$, which is equal to the integral over the spherical layer $\mathbb G(\eta)=\{x=(x_1,\dots,x_m)\in\mathbb S^{m-1}\colon h'\le x_m\le h''\}$ defined by a pair of real numbers $\eta=(h',h'')$, $-1\le h'$, on the set $\mathcal P_{n,m}$ with the norm of the space $L(\mathbb S^{m-1})$ of functions summable on the sphere. (2) The best approximation in $L_\infty(\mathbb S^{m-1})$ of the characteristic function $\chi_\eta$ of the layer $\mathbb G(\eta)$ by the subspace $\mathcal P^\bot_{n,m}$ of functions from $L_\infty(\mathbb S^{m-1})$ that are orthogonal to the space of polynomials $\mathcal P_{n,m}$. (3) The best approximation in the space $L(\mathbb S^{m-1})$ of the function $\chi_\eta$ by the space of polynomials $\mathcal P_{n,m}$. We present the solution of all three problems for the values $h'$ and $h''$ which are neighboring roots of the polynomial in a single variable of degree $n+1$ that deviates the least from zero in the space $L_1^\phi(-1,1)$ on the interval $(-1,1)$ with ultraspherical weight $ \phi(t)=(1-t^2)^\alpha$, $\alpha=(m-3)/2$. We study the respective one-dimensional problems in the space of functions summable on $(-1,1)$ with arbitrary not necessary ultraspherical weight.
Keywords: Euclidean sphere, characteristic function of a spherical layer, algebraic polynomials, approximation on a sphere.
@article{TIMM_2011_17_3_a13,
     author = {M. V. Deikalova},
     title = {Several extremal approximation problems for the characteristic function of a~spherical layer},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {122--135},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a13/}
}
TY  - JOUR
AU  - M. V. Deikalova
TI  - Several extremal approximation problems for the characteristic function of a spherical layer
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 122
EP  - 135
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a13/
LA  - ru
ID  - TIMM_2011_17_3_a13
ER  - 
%0 Journal Article
%A M. V. Deikalova
%T Several extremal approximation problems for the characteristic function of a spherical layer
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 122-135
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a13/
%G ru
%F TIMM_2011_17_3_a13
M. V. Deikalova. Several extremal approximation problems for the characteristic function of a spherical layer. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 122-135. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a13/

[1] Taikov L. V., “Odin krug ekstremalnykh zadach dlya trigonometricheskikh polinomov”, Uspekhi mat. nauk, 20:3 (1965), 205–211 | MR | Zbl

[2] Taikov L. V., “O nailuchshem priblizhenii yader Dirikhle”, Mat. zametki, 53:6 (1993), 116–121 | MR | Zbl

[3] Deikalova M. V., “Funktsional Taikova v prostranstve algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Mat. zametki, 84:4 (2008), 532–551 | MR | Zbl

[4] Deikalova M. V., “Integralnoe priblizhenie kharakteristicheskoi funktsii sfericheskoi shapochki”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 144–155

[5] Babenko A. G., Kryakin Yu. V., “O priblizhenii stupenchatykh funktsii trigonometricheskimi polinomami v integralnoi metrike”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 12:1 (2006), 27–56

[6] Babenko A. G., Kryakin Yu. V., “Integralnoe priblizhenie kharakteristicheskoi funktsii intervala trigonometricheskimi polinomami”, Trudy Instituta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 19–37

[7] Danford N., Shvarts Dzh .T., Lineinye operatory. Obschaya teoriya, Izd-vo URSS, M., 2004, 896 pp.

[8] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976, 320 pp. | MR

[9] Daugavet I. K., Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, L., 1977, 184 pp. | MR | Zbl

[10] DeVore R. A., Lorentz G. G., Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993, 449 pp. | MR | Zbl

[11] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, Fizmatlit, M., 1979, 416 pp. | MR | Zbl

[12] Bernshtein S. N., “O mnogochlenakh, ortogonalnykh na konechnom otrezke”, Sobr. soch., v 4 t., v. 2, Izd-vo AN SSSR, M., 1954, 7–106

[13] Korkine A., Zolotareff G., “Sur un certain minimum”: Korkin A. N., Sochineniya, v. 1, S.-Peterb. un-t, SPb, 1911, 329–349