Voir la notice du chapitre de livre
@article{TIMM_2011_17_3_a13,
author = {M. V. Deikalova},
title = {Several extremal approximation problems for the characteristic function of a~spherical layer},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {122--135},
year = {2011},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a13/}
}
TY - JOUR AU - M. V. Deikalova TI - Several extremal approximation problems for the characteristic function of a spherical layer JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 122 EP - 135 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a13/ LA - ru ID - TIMM_2011_17_3_a13 ER -
M. V. Deikalova. Several extremal approximation problems for the characteristic function of a spherical layer. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 122-135. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a13/
[1] Taikov L. V., “Odin krug ekstremalnykh zadach dlya trigonometricheskikh polinomov”, Uspekhi mat. nauk, 20:3 (1965), 205–211 | MR | Zbl
[2] Taikov L. V., “O nailuchshem priblizhenii yader Dirikhle”, Mat. zametki, 53:6 (1993), 116–121 | MR | Zbl
[3] Deikalova M. V., “Funktsional Taikova v prostranstve algebraicheskikh mnogochlenov na mnogomernoi evklidovoi sfere”, Mat. zametki, 84:4 (2008), 532–551 | MR | Zbl
[4] Deikalova M. V., “Integralnoe priblizhenie kharakteristicheskoi funktsii sfericheskoi shapochki”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 4, 2010, 144–155
[5] Babenko A. G., Kryakin Yu. V., “O priblizhenii stupenchatykh funktsii trigonometricheskimi polinomami v integralnoi metrike”, Izv. TulGU. Ser. Matematika. Mekhanika. Informatika, 12:1 (2006), 27–56
[6] Babenko A. G., Kryakin Yu. V., “Integralnoe priblizhenie kharakteristicheskoi funktsii intervala trigonometricheskimi polinomami”, Trudy Instituta matematiki i mekhaniki UrO RAN, 14, no. 3, 2008, 19–37
[7] Danford N., Shvarts Dzh .T., Lineinye operatory. Obschaya teoriya, Izd-vo URSS, M., 2004, 896 pp.
[8] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976, 320 pp. | MR
[9] Daugavet I. K., Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, L., 1977, 184 pp. | MR | Zbl
[10] DeVore R. A., Lorentz G. G., Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993, 449 pp. | MR | Zbl
[11] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, Fizmatlit, M., 1979, 416 pp. | MR | Zbl
[12] Bernshtein S. N., “O mnogochlenakh, ortogonalnykh na konechnom otrezke”, Sobr. soch., v 4 t., v. 2, Izd-vo AN SSSR, M., 1954, 7–106
[13] Korkine A., Zolotareff G., “Sur un certain minimum”: Korkin A. N., Sochineniya, v. 1, S.-Peterb. un-t, SPb, 1911, 329–349