On the extremal problem about the minimum of the free term of a nonnegative trigonometric polynomial
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 105-121
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A new extremal problem is solved about the minimum of the free term of a nonnegative even trigonometric polynomial with the following conditions on its coefficients: all coefficients except for the free term are greater than or equal to 1 and the sum of all coefficients except for the free term is equal to a specified value. As a result, Fejér's known result is improved.
Keywords: extremal problem, nonnegative trigonometric polynomial.
@article{TIMM_2011_17_3_a12,
     author = {A. S. Belov},
     title = {On the extremal problem about the minimum of the free term of a~nonnegative trigonometric polynomial},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {105--121},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a12/}
}
TY  - JOUR
AU  - A. S. Belov
TI  - On the extremal problem about the minimum of the free term of a nonnegative trigonometric polynomial
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 105
EP  - 121
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a12/
LA  - ru
ID  - TIMM_2011_17_3_a12
ER  - 
%0 Journal Article
%A A. S. Belov
%T On the extremal problem about the minimum of the free term of a nonnegative trigonometric polynomial
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 105-121
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a12/
%G ru
%F TIMM_2011_17_3_a12
A. S. Belov. On the extremal problem about the minimum of the free term of a nonnegative trigonometric polynomial. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 105-121. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a12/

[1] Belov A. S., “Ob odnoi ekstpemalnoi zadache o minimume tpigonometpicheskogo polinoma”, Izv. RAN. Ser. mat., 57:6 (1993), 212–226 | MR | Zbl

[2] Belov A. S., “Ob ekstpemalnykh zadachakh na mnozhestve neotpitsatelnykh tpigonometpicheskikh polinomov”, Sovpemennye ppoblemy teopii funktsii i ikh ppilozheniya, tez. dokl. 12-i Sapat. zimn. shk., Izd-vo “Kolledzh”, Sapatov, 2004, 19–21

[3] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965, 616 pp. | MR

[4] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965, 538 pp. | MR

[5] Polia G., Segë G., Zadachi i teoremy iz analiza, Ch. 2, Nauka, M., 1978, 432 pp.