On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 98-104

Voir la notice de l'article provenant de la source Math-Net.Ru

A bounded closed convex Chebyshev approximative compact body $M\subset X=L_1[0,1]$ without farthest points is constructed such that $\overline{X\setminus M}$ is antiproximinal.
Mots-clés : antiproximinal set
Keywords: farthest points.
@article{TIMM_2011_17_3_a11,
     author = {V. S. Balaganskii},
     title = {On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--104},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/}
}
TY  - JOUR
AU  - V. S. Balaganskii
TI  - On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 98
EP  - 104
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/
LA  - ru
ID  - TIMM_2011_17_3_a11
ER  - 
%0 Journal Article
%A V. S. Balaganskii
%T On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 98-104
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/
%G ru
%F TIMM_2011_17_3_a11
V. S. Balaganskii. On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 98-104. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/