On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 98-104
Voir la notice de l'article provenant de la source Math-Net.Ru
A bounded closed convex Chebyshev approximative compact body $M\subset X=L_1[0,1]$ without farthest points is constructed such that $\overline{X\setminus M}$ is antiproximinal.
Mots-clés :
antiproximinal set
Keywords: farthest points.
Keywords: farthest points.
@article{TIMM_2011_17_3_a11,
author = {V. S. Balaganskii},
title = {On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {98--104},
publisher = {mathdoc},
volume = {17},
number = {3},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/}
}
TY - JOUR AU - V. S. Balaganskii TI - On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 98 EP - 104 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/ LA - ru ID - TIMM_2011_17_3_a11 ER -
%0 Journal Article %A V. S. Balaganskii %T On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal %J Trudy Instituta matematiki i mehaniki %D 2011 %P 98-104 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/ %G ru %F TIMM_2011_17_3_a11
V. S. Balaganskii. On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 98-104. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/