On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 98-104
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A bounded closed convex Chebyshev approximative compact body $M\subset X=L_1[0,1]$ without farthest points is constructed such that $\overline{X\setminus M}$ is antiproximinal.
Mots-clés : antiproximinal set
Keywords: farthest points.
@article{TIMM_2011_17_3_a11,
     author = {V. S. Balaganskii},
     title = {On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {98--104},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/}
}
TY  - JOUR
AU  - V. S. Balaganskii
TI  - On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 98
EP  - 104
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/
LA  - ru
ID  - TIMM_2011_17_3_a11
ER  - 
%0 Journal Article
%A V. S. Balaganskii
%T On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 98-104
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/
%G ru
%F TIMM_2011_17_3_a11
V. S. Balaganskii. On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 98-104. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/

[1] Cobzaş S., “Antiproximinal sets in Banach spaces”, Acta Univ. Carolin. Math. Phys., 40:2 (1999), 43–52 | MR | Zbl

[2] Balaganskii V. S., “Antiproksiminalnye mnozhestva v prostranstvakh nepreryvnykh funktsii”, Mat. zametki, 60:5 (1996), 643–657 | MR | Zbl

[3] Balaganskii V. S., “Ob approksimativnykh svoistvakh mnozhestv s vypuklym dopolneniem”, Mat. zametki, 57:1 (1995), 20–29 | MR | Zbl

[4] Balaganskii V. S., “Approksimativnye svoistva mnozhestv s vypuklym dopolneniem”, Trudy Instituta matematiki i mekhaniki UrO RAN, 5, 1998, 205–226 | Zbl

[5] Balaganskii V. S., “O blizhaishikh i naibolee udalennykh tochkakh”, Mat. zametki, 63:2 (1998), 289–291 | MR | Zbl

[6] Edelstein M. A., “Weakly proximinal sets”, J. Approx. Theory, 18:1 (1976), 1–8 | DOI | MR | Zbl

[7] Balaganskii V. S., “O svyazi approksimativnykh i geometricheskikh svoistv mnozhestv”, Approksimatsiya v konkretnykh abstraktnykh banakhovykh prostranstvakh, sb. nauch. tr. In-ta matematiki i mekhaniki UNTs AN SSSR, Sverdlovsk, 1987, 46–53 | MR

[8] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 744 pp. | MR

[9] Borodin P. A., “Primer ogranichennogo approksimativno kompaktnogo mnozhestva, ne yavlyayuschegosya kompaktnym”, Uspekhi mat. nauk, 49:4 (1994), 157–158 | MR | Zbl

[10] Pyatyshev I. A., “Primer ogranichennogo approksimativno kompaktnogo mnozhestva, ne yavlyayuschegosya lokalno kompaktnym”, Uspekhi mat. nauk, 62:5 (2007), 163–164 | MR | Zbl

[11] Pyatyshev I. A., “Primer vypuklogo approksimativno kompaktnogo tela v prostranstve $c_0$”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 2005, no. 3, 57–59 | MR