Voir la notice du chapitre de livre
Keywords: farthest points.
@article{TIMM_2011_17_3_a11,
author = {V. S. Balaganskii},
title = {On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {98--104},
year = {2011},
volume = {17},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/}
}
TY - JOUR AU - V. S. Balaganskii TI - On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 98 EP - 104 VL - 17 IS - 3 UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/ LA - ru ID - TIMM_2011_17_3_a11 ER -
%0 Journal Article %A V. S. Balaganskii %T On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal %J Trudy Instituta matematiki i mehaniki %D 2011 %P 98-104 %V 17 %N 3 %U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/ %G ru %F TIMM_2011_17_3_a11
V. S. Balaganskii. On convex closed bounded bodies without farthest points such that the closure of their complement is antiproximinal. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 98-104. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a11/
[1] Cobzaş S., “Antiproximinal sets in Banach spaces”, Acta Univ. Carolin. Math. Phys., 40:2 (1999), 43–52 | MR | Zbl
[2] Balaganskii V. S., “Antiproksiminalnye mnozhestva v prostranstvakh nepreryvnykh funktsii”, Mat. zametki, 60:5 (1996), 643–657 | MR | Zbl
[3] Balaganskii V. S., “Ob approksimativnykh svoistvakh mnozhestv s vypuklym dopolneniem”, Mat. zametki, 57:1 (1995), 20–29 | MR | Zbl
[4] Balaganskii V. S., “Approksimativnye svoistva mnozhestv s vypuklym dopolneniem”, Trudy Instituta matematiki i mekhaniki UrO RAN, 5, 1998, 205–226 | Zbl
[5] Balaganskii V. S., “O blizhaishikh i naibolee udalennykh tochkakh”, Mat. zametki, 63:2 (1998), 289–291 | MR | Zbl
[6] Edelstein M. A., “Weakly proximinal sets”, J. Approx. Theory, 18:1 (1976), 1–8 | DOI | MR | Zbl
[7] Balaganskii V. S., “O svyazi approksimativnykh i geometricheskikh svoistv mnozhestv”, Approksimatsiya v konkretnykh abstraktnykh banakhovykh prostranstvakh, sb. nauch. tr. In-ta matematiki i mekhaniki UNTs AN SSSR, Sverdlovsk, 1987, 46–53 | MR
[8] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 744 pp. | MR
[9] Borodin P. A., “Primer ogranichennogo approksimativno kompaktnogo mnozhestva, ne yavlyayuschegosya kompaktnym”, Uspekhi mat. nauk, 49:4 (1994), 157–158 | MR | Zbl
[10] Pyatyshev I. A., “Primer ogranichennogo approksimativno kompaktnogo mnozhestva, ne yavlyayuschegosya lokalno kompaktnym”, Uspekhi mat. nauk, 62:5 (2007), 163–164 | MR | Zbl
[11] Pyatyshev I. A., “Primer vypuklogo approksimativno kompaktnogo tela v prostranstve $c_0$”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 2005, no. 3, 57–59 | MR