Influence of smoothness on the error of approximation of derivatives under local interpolation on triangulations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 83-97
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is concerned with one problem of function interpolation on a triangle. We consider a large class of interpolation conditions guaranteeing the smoothness of order $m$ of the resulting piecewise polynomial function on the triangulated domain. It is known that, for smoothness $m\ge1$, the known upper estimates for the error of approximation of derivatives of order $2$ and above by derivatives of interpolation polynomials defined on a triangulation element contain the sine of the smallest angle in the denominator. As a result, the “smallest angle condition” must be imposed on the triangulation. It was shown earlier that the influence of the smallest angle could be weakened (which does not mean that it can be eliminated in all cases). The principal aim of this paper is to show that, for a large number of methods of choosing interpolation conditions, including traditional conditions, the influence of the smallest angle of the triangle on the error of approximation of derivatives of a function by derivatives of the interpolation polynomial is essential for a number of derivatives of order $2$ and above for $m\ge1$. In the case $m=0$, the influence of the middle (largest) angle is important. As a consequence, the results on the unimprovability of the upper estimates obtained earlier are strengthened.
Mots-clés : multidimensional interpolation
Keywords: finite element method, approximation.
@article{TIMM_2011_17_3_a10,
     author = {N. V. Baidakova},
     title = {Influence of smoothness on the error of approximation of derivatives under local interpolation on triangulations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {83--97},
     year = {2011},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a10/}
}
TY  - JOUR
AU  - N. V. Baidakova
TI  - Influence of smoothness on the error of approximation of derivatives under local interpolation on triangulations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 83
EP  - 97
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a10/
LA  - ru
ID  - TIMM_2011_17_3_a10
ER  - 
%0 Journal Article
%A N. V. Baidakova
%T Influence of smoothness on the error of approximation of derivatives under local interpolation on triangulations
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 83-97
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a10/
%G ru
%F TIMM_2011_17_3_a10
N. V. Baidakova. Influence of smoothness on the error of approximation of derivatives under local interpolation on triangulations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 3, pp. 83-97. http://geodesic.mathdoc.fr/item/TIMM_2011_17_3_a10/

[1] Ženišek A., “Interpolation polynomials on the triangle”, Numer. Math., 15:4 (1970), 283–296 | DOI | MR | Zbl

[2] Bramble J. H., Zlamal M., “Triangular elements in the finite element method”, Math. Comp., 24:112 (1970), 809–820 | DOI | MR

[3] Ciarlet P. G., Raviart P. A., “General Lagrange and Hermite interpolation in $R^n$ with applications to finite element methods”, Arch. Rational Mech. Anal., 46:3 (1972), 177–199 | DOI | MR | Zbl

[4] Ženišek A., “Polynomial approximation on tetrahedrons in the finite element method”, J. Approx. Theory, 7:4 (1973), 334–351 | DOI | MR | Zbl

[5] Ženišek A., “A general theorem on triangular finite $C^{(m)}$-elements”, Rev. Francaise Automat. Informat. Recherche Operationelle Ser. Rouge Anal. Numer., 8:2 (1974), 119–127 | MR | Zbl

[6] Synge J. L., The hypercircle in mathematical physics, Cambridge Univ. Press, Cambridge, 1957, 424 pp. | MR | Zbl

[7] Zlamal M., Ženišek A., “Mathematical aspect of the finite element method”, Technical, physical and mathematical principles of the finite element method, eds. V. Kolar et al., Acad. VED, Praha, 1971, 15–39

[8] Babuka I., Aziz A. K., “On the angle condition in the finite element method”, SIAM J. Numer. Anal., 13:2 (1976), 214–226 | DOI | MR

[9] Subbotin Yu. N., “Mnogomernaya kusochno-polinomialnaya interpolyatsiya”, Metody approksimatsii i interpolyatsii, ed. A. Yu. Kuznetsov, VTs SO AN SSSR, Novosibirsk, 1981, 148–153 | MR

[10] Subbotin Yu. N., “Zavisimost otsenok mnogomernoi kusochno-polinomialnoi approksimatsii ot geometricheskikh kharakteristik triangulyatsii”, Tr. MIAN SSSR, 189, 1989, 117–137 | MR | Zbl

[11] Subbotin Yu. N., “Pogreshnost approksimatsii interpolyatsionnymi mnogochlenami malykh stepenei na $n$-simpleksakh”, Mat. zametki, 48:4 (1990), 88–99 | MR | Zbl

[12] Subbotin Yu. N., “Zavisimost otsenok approksimatsii interpolyatsionnymi polinomami pyatoi stepeni ot geometricheskikh kharakteristik treugolnika”, Trudy Instituta matematiki i mekhaniki UrO RAN, 2, 1992, 110–119 | MR | Zbl

[13] Latypova N. V., “Otsenki pogreshnosti approksimatsii mnogochlenami stepeni $4k+3$ na treugolnike”, Tr. In-ta matematiki i mekhaniki UrO RAN, 8, no. 1, 2002, 203–226 | MR | Zbl

[14] Baidakova N. V., “On some interpolation process by polynomials of degree $4m+1$ on the triangle”, Rus. J. Numer. Anal. Math. Modelling, 14:2 (1999), 87–107 | DOI | MR | Zbl

[15] Subbotin Yu. N., “Novyi kubicheskii element v MKE”, Trudy Instituta matematiki i mekhaniki UrO RAN, 11, no. 2, 2005, 120–130 | MR | Zbl

[16] Baidakova N. V., “Ob odnom sposobe ermitovoi interpolyatsii mnogochlenami tretei stepeni na treugolnike”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11, no. 2, 2005, 47–52 | MR | Zbl

[17] Ženišek A., “Maximum-angle condition and triangular finite elements of Hermite type”, Math. Comp., 64:211 (1995), 929–941 | DOI | MR | Zbl

[18] Latypova N. V., “Pogreshnost kusochno-kubicheskoi interpolyatsii na treugolnike”, Vestn. Udm. un-ta. Ser. Matematika, 2003, no. 1, 3–18

[19] Kupriyanova Yu. V., “Ob odnoi teoreme iz teorii splainov”, Zhurn. vychisl. matematiki i mat. fiziki, 48:2 (2008), 206–211 | MR | Zbl

[20] Matveeva Yu. V., “Ob ermitovoi interpolyatsii mnogochlenami tretei stepeni na treugolnike s ispolzovaniem smeshannykh proizvodnykh”, Izv. Sarat. un-ta. Nov. ser. Matematika. Mekhanika. Informatika, 7:1 (2007), 23–27

[21] Faddeev D. K., Sominskii I. S., Sbornik zadach po vysshei algebre, Nauka, M., 1977, 288 pp.

[22] Korneichuk N. P., Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987, 424 pp. | MR