Uniqueness of a cycle with discounting that is optimal with respect to the average time profit
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 80-87
Voir la notice de l'article provenant de la source Math-Net.Ru
For cyclic processes modeled by periodic motions of a continuous control system on a circle, we prove the uniqueness of a cycle maximizing the average one-period time profit in the case of discounting provided that the minimum and maximum velocities of the system coincide at some points only and the profit density is a differentiable function with a finite number of critical points. The uniqueness theorem is an analog of Arnolds theorem on the uniqueness of such a cycle in the case when the profit gathered along the cycle is not discounted.
Keywords:
average optimization, periodic process, necessary optimality condition, discounting.
@article{TIMM_2011_17_2_a7,
author = {A. A. Davydov and T. S. Shutkina},
title = {Uniqueness of a cycle with discounting that is optimal with respect to the average time profit},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {80--87},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a7/}
}
TY - JOUR AU - A. A. Davydov AU - T. S. Shutkina TI - Uniqueness of a cycle with discounting that is optimal with respect to the average time profit JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 80 EP - 87 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a7/ LA - ru ID - TIMM_2011_17_2_a7 ER -
%0 Journal Article %A A. A. Davydov %A T. S. Shutkina %T Uniqueness of a cycle with discounting that is optimal with respect to the average time profit %J Trudy Instituta matematiki i mehaniki %D 2011 %P 80-87 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a7/ %G ru %F TIMM_2011_17_2_a7
A. A. Davydov; T. S. Shutkina. Uniqueness of a cycle with discounting that is optimal with respect to the average time profit. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 80-87. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a7/