Uniqueness of a cycle with discounting that is optimal with respect to the average time profit
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 80-87
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For cyclic processes modeled by periodic motions of a continuous control system on a circle, we prove the uniqueness of a cycle maximizing the average one-period time profit in the case of discounting provided that the minimum and maximum velocities of the system coincide at some points only and the profit density is a differentiable function with a finite number of critical points. The uniqueness theorem is an analog of Arnolds theorem on the uniqueness of such a cycle in the case when the profit gathered along the cycle is not discounted.
Keywords: average optimization, periodic process, necessary optimality condition, discounting.
@article{TIMM_2011_17_2_a7,
     author = {A. A. Davydov and T. S. Shutkina},
     title = {Uniqueness of a cycle with discounting that is optimal with respect to the average time profit},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {80--87},
     year = {2011},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a7/}
}
TY  - JOUR
AU  - A. A. Davydov
AU  - T. S. Shutkina
TI  - Uniqueness of a cycle with discounting that is optimal with respect to the average time profit
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 80
EP  - 87
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a7/
LA  - ru
ID  - TIMM_2011_17_2_a7
ER  - 
%0 Journal Article
%A A. A. Davydov
%A T. S. Shutkina
%T Uniqueness of a cycle with discounting that is optimal with respect to the average time profit
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 80-87
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a7/
%G ru
%F TIMM_2011_17_2_a7
A. A. Davydov; T. S. Shutkina. Uniqueness of a cycle with discounting that is optimal with respect to the average time profit. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 80-87. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a7/

[1] Arnold V. I., “Optimizatsiya v srednem i fazovye perekhody v upravlyaemykh dinamicheskikh sistemakh”, Funkts. analiz i ego prilozheniya, 36:2 (2002), 1–11 | MR | Zbl

[2] Davydov A. A., “Osobennosti tipichnogo dokhoda v modeli Arnolda tsiklicheskikh protsessov”, Tr. MIAN, 250, 2005, 79–94 | MR | Zbl

[3] Davydov A. A., Mena Matosh E., “Tipichnye fazovye perekhody i osobennosti vygody v modeli Arnolda”, Mat. sb., 198:1 (2007), 21–42 | MR | Zbl

[4] Davydov A. A., Mena-Matos H., “Singularity theory approach to time averaged optimization”, Singularities in Geometry and Topology, Proc. of the Trieste singularity summer school and workshop, World Scientific Publishing Co. Pte. Ltd, Singapore, 2007, 598–628 | MR | Zbl

[5] Davydov A. A., Shutkina T. S., “Optimizatsiya tsiklicheskogo protsessa s diskontirovaniem po ego srednei vremennoi vygode”, Uspekhi mat. nauk, 64:1(385) (2009), 143–144 | MR | Zbl

[6] Davydov A., Shutkina T., “Time averaged optimization of cyclic processes with discount”, Nonlinear Analysis and Optimization Problems, Proc. from the Internat. conf., Montenegro Academy of Sciences and Arts, 2009, 93–100 | MR | Zbl