Gravitational smoothing of time series
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 62-70
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This work describes the plotting of the smoothing of functions determined on the finite metric spaces based on the concept of the gravitational continuity. Eventually the result is the new type of time series smoothing which is connected with a quadratic regression cm a limit way.
Keywords: gravitational smoothing, gravitational smoothness discrepancy, measures of nearness.
@article{TIMM_2011_17_2_a5,
     author = {A. D. Gvishiani and S. M. Agayan and Sh. R. Bogoutdinov and A. I. Kagan},
     title = {Gravitational smoothing of time series},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {62--70},
     year = {2011},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a5/}
}
TY  - JOUR
AU  - A. D. Gvishiani
AU  - S. M. Agayan
AU  - Sh. R. Bogoutdinov
AU  - A. I. Kagan
TI  - Gravitational smoothing of time series
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 62
EP  - 70
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a5/
LA  - ru
ID  - TIMM_2011_17_2_a5
ER  - 
%0 Journal Article
%A A. D. Gvishiani
%A S. M. Agayan
%A Sh. R. Bogoutdinov
%A A. I. Kagan
%T Gravitational smoothing of time series
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 62-70
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a5/
%G ru
%F TIMM_2011_17_2_a5
A. D. Gvishiani; S. M. Agayan; Sh. R. Bogoutdinov; A. I. Kagan. Gravitational smoothing of time series. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 62-70. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a5/

[1] A. D. Gvishiani [i dr.], “Algoritmy iskusstvennogo intellekta dlya klasterizatsii magnitnykh anomalii”, Fizika Zemli, 2002, no. 7, 13–28

[2] V. Mikhailov [et al.], “Application of artificial intelligence for Euler solutions clustering”, Geophysics, 68:1 (2003), 168–180 | DOI

[3] Agayan S. M., Solovëv A. A., “Vydelenie plotnykh oblastei v metricheskikh prostranstvakh na osnove kristallizatsii”, System Research Information Technologies, 2004, no. 2, 7–23 | MR

[4] A. A. Solovëv [i dr.], “Opredelenie vektora magnitnogo momenta pri pomoschi klasternogo analiza rezultatov lokalnoi lineinoi psevdoinversii anomalii $\Delta T$”, Dokl. AN, 404:1 (2005), 109–112

[5] Sh. R. Bogoutdinov [i dr.], “Algoritmy nechetkoi logiki v analize elektrotelluricheskikh dannykh v svyazi s monitoringom vulkanicheskoi aktivnosti”, Fizika Zemli, 2007, no. 7, 72–85

[6] Gvishiani A. D., Agayan S. M., Bogoutdinov Sh. R., “Opredelenie anomalii na vremennykh ryadakh metodami nechetkogo raspoznavaniya”, Dokl. AN, 421:1 (2008), 101–105 | Zbl

[7] Sh. R. Bogoutdinov [i dr.], “Raspoznavanie vozmuschenii s zadannoi morfologiei na vremennykh ryadakh. I. Vybrosy na magnitogrammakh vsemirnoi seti INTERMAGNET”, Fizika Zemli, 2010, no. 11, 99–112

[8] Samarskii A. A., Vvedenie v chislennye metody, Nauka, M., 1982, 269 pp. | MR

[9] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989, 432 pp. | MR

[10] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Izd-vo Laboratoriya bazovykh znanii, M., 2003, 632 pp.

[11] Pshenichnyi B. N., Danilin Yu. M., Chislennye metody v ekstremalnykh zadachakh, Nauka, M., 1975, 319 pp. | MR | Zbl

[12] Dobeshi I., Desyat lektsii po veivletam, RKhD, M., 2001, 461 pp.

[13] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005, 671 pp.