Levenberg–Marquardt method and its modified versions for solving nonlinear equations with application to the inverse gravimetry problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 53-61
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Levenberg–Marquardt method and its modified versions are studied. Under some local conditions on the operator (in a neighborhood of a solution), strong and weak convergence of iterations is established with the solution error monotonically decreasing. The conditions are shown to be true for one class of nonlinear integral equations, in particular, for the structural gravimetry problem. Results of model numerical experiments for the inverse nonlinear gravimetry problem are presented.
Mots-clés : Levenberg–Marquardt method, a priori information
Keywords: modified process, inverse gravimetry problem.
@article{TIMM_2011_17_2_a4,
     author = {V. V. Vasin and G. Ya. Perestoronina},
     title = {Levenberg{\textendash}Marquardt method and its modified versions for solving nonlinear equations with application to the inverse gravimetry problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {53--61},
     year = {2011},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a4/}
}
TY  - JOUR
AU  - V. V. Vasin
AU  - G. Ya. Perestoronina
TI  - Levenberg–Marquardt method and its modified versions for solving nonlinear equations with application to the inverse gravimetry problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 53
EP  - 61
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a4/
LA  - ru
ID  - TIMM_2011_17_2_a4
ER  - 
%0 Journal Article
%A V. V. Vasin
%A G. Ya. Perestoronina
%T Levenberg–Marquardt method and its modified versions for solving nonlinear equations with application to the inverse gravimetry problem
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 53-61
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a4/
%G ru
%F TIMM_2011_17_2_a4
V. V. Vasin; G. Ya. Perestoronina. Levenberg–Marquardt method and its modified versions for solving nonlinear equations with application to the inverse gravimetry problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 53-61. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a4/

[1] Kaltenbacher B., Neubauer A., Scherzer O., Iterative regularization methods for nonlinear ill-posed problems, Walter de Gruyter, Berlin–New York, 2008, 194 pp. | MR | Zbl

[2] Vasin V. V., Eremin I. I., Operators and iterative processes of Fejer type. Theory and applications, Walter de Gruyter, Berlin–New York, 2009, 155 pp. | MR | Zbl

[3] Vasin V. V., Ageev A. L., Ill-posed problems with a priori information, VSP, Utrecht, etc., 1995, 255 pp. | MR | Zbl

[4] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of linear ill-posed problems and its applications, VSP, Utrecht etc., 2002, 281 pp., Translation from Russian book, 1978 | MR | Zbl

[5] V. V. Vasin [i dr.], “Reshenie trekhmernykh obratnykh zadach gravimetrii i magnitometrii dlya trekhsloinoi sredy”, Matematicheskoe modelirovanie, 15:2 (2003), 69–76 | Zbl

[6] V. V. Vasin [i dr.], “Modifitsirovannyi metod Levenberga–Markvardta dlya resheniya zadachi dekonvolyutsii”, Tez. dokl. molodezh. mezhdunar. nauch. shk.-konf. “Teoriya i chislennye metody resheniya obratnykh i nekorrektnykh zadach”, Izd.-vo IM SO RAN, Novosibirsk, 2009, 13–14

[7] Hanke M., “A regularization Levenberg–Marquardt scheme, with applications to inverse groundwater filtration problems”, Inverse Problems, 13 (1997), 79–95 | DOI | MR | Zbl

[8] Vasin V. V., Skorik G. G., “Iterative processes of gradient type with applications to gravimetry mandmagnetometry inverse problems”, J. Inverse and Ill-Posed Probl., 18:8 (2010), 855–876 | DOI