Voir la notice du chapitre de livre
@article{TIMM_2011_17_2_a3,
author = {S. N. Vassilyev and G. M. Ponomarev},
title = {Automation methods for logical derivation and their application in the control of dynamic and intelligent systems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {35--52},
year = {2011},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a3/}
}
TY - JOUR AU - S. N. Vassilyev AU - G. M. Ponomarev TI - Automation methods for logical derivation and their application in the control of dynamic and intelligent systems JO - Trudy Instituta matematiki i mehaniki PY - 2011 SP - 35 EP - 52 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a3/ LA - ru ID - TIMM_2011_17_2_a3 ER -
%0 Journal Article %A S. N. Vassilyev %A G. M. Ponomarev %T Automation methods for logical derivation and their application in the control of dynamic and intelligent systems %J Trudy Instituta matematiki i mehaniki %D 2011 %P 35-52 %V 17 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a3/ %G ru %F TIMM_2011_17_2_a3
S. N. Vassilyev; G. M. Ponomarev. Automation methods for logical derivation and their application in the control of dynamic and intelligent systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 35-52. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a3/
[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl
[2] Osipov Yu. S., “Pakety programm: podkhod k resheniyu zadach pozitsionnogo upravleniya s nepolnoi informatsiei”, Uspekhi mat. nauk, 61:4(370) (2006), 25–76 | MR | Zbl
[3] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Fizmatlit, M., 1935, 320 pp.
[4] Chetaev N. G., Ustoichivost dvizheniya, Fizmatlit, M., 1965, 208 pp.
[5] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 212 pp. | MR
[6] Rumyantsev V. V., “Metod funktsii Lyapunova v teorii ustoichivosti”, Mekhanika v SSSR za 50 let. Obschaya i prikladnaya mekhanika, Sb. st., v. 1, Nauka, M., 1968, 7–66
[7] Lyndon R. C., “Properties preserved under homomorphism”, Pacific J. Math., 9 (1959), 143–154 | MR | Zbl
[8] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970, 392 pp. | MR
[9] Matrosov V. M., “Metod sravneniya v dinamike sistem. I”, Differents. uravneniya, 10:9 (1974), 1547–1559 ; “II”, 11:3 (1975), 403–417 | MR | Zbl | Zbl
[10] Matrosov V. M., Anapolskii L. Yu., Vasilev S. N., Metod sravneniya v matematicheskoi teorii sistem, Nauka, Novosibirsk, 1980, 480 pp.
[11] V. M. Matrosov [i dr.], Algoritmy vyvoda teorem metoda vektornykh funktsii Lyapunova, Nauka, Novosibirsk, 1981, 271 pp.
[12] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001, 384 pp.
[13] Vasilev S. N., “Metod reduktsii i kachestvennyi analiz dinamicheskikh sistem. I”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 1, 21–29; “II”, No 2, 5–17
[14] S. N. Vasilev [i dr.], Intellektnoe upravlenie dinamicheskimi sistemami, Fizmatlit, M., 2000, 352 pp.
[15] Robinson J. A., “A machine-oriented logic based on the resolution principle”, J. Assoc. Comput. Mach., 12 (1965), 23–41 | MR | Zbl
[16] Robinson J. A., “The generalised resolution principle”, Machine Intelligence, 3, ed. D. Michie, American Elsevier, New York, 1968, 77–94
[17] Maslov S. Yu., “Obratnyi metod ustanovleniya vyvodimosti v klassicheskom ischislenii predikatov”, Dokl. AN SSSR, 159:1 (1964), 17–20 | MR | Zbl
[18] Maslov S. Yu., “Obratnyi metod ustanovleniya vyvodimosti nepreneksnykh formul ischisleniya predikatov”, Dokl. AN SSSR, 172:1 (1967), 22–25 | MR | Zbl
[19] Rassel S., Norvig P., Iskusstvennyi intellekt: sovremennyi podkhod, Vilyams, M., 2006, 1408 pp.
[20] Riazanov A., Voronkov A., “Limited resource strategy in resolution theorem proving”, J. Symbolic Comput., 36:1–2 (2003), 101–115 | DOI | MR | Zbl
[21] Kalman J. A., Automated reasoning with Otter, Rinton Press, Princeton–New York, 2001, 536 pp. | MR | Zbl
[22] Kowalski R., “Predicate logic as a programming language”, Proc. IFIP-74 Congress, 1974, 569–574 | MR | Zbl
[23] Ershov Yu. L., “$\Sigma$-opredelimost na dopustimykh mnozhestvakh”, Dokl. AN SSSR, 285:4 (1985), 792–794 | MR
[24] Goncharov S. S., Sviridenko D. I., “$\Sigma$-programmirovanie”, Vychisl. sistemy, 107, 1985, 3–29 | MR | Zbl
[25] Vasilev S. N., “Metod sinteza uslovii vyvodimosti khornovskikh i nekotorykh drugikh formul”, Sib. mat. zhurn., 38:5 (1997), 1034–1046 | MR | Zbl
[26] Ershov Yu. L., Palyutin E. A., Matematicheskaya logika, Nauka, M., 1979, 320 pp. | MR
[27] S. Ferilli [et al.], “A complete subsumption algorithm”, Advances in Artificial Intelligence, Proc. 6th Congress of the Italian Association for Artificial Intelligence, eds. A. Cappelli, F. Turini, 2003, 1–13 | Zbl
[28] Chang C.-L., Lee R. C.-T., Symbolic logic and mechanical theorem proving, Acad. Press, New York–San Francisco–London, 1973 | MR | Zbl
[29] Vasilev S. N., Nekotorye voprosy matematicheskoi teorii sistem, dis. $\dots$ kand. fiz.-mat. nauk, Irkutsk, 1976, 133 pp.
[30] Korobov V. I., “Obschii podkhod k resheniyu zadachi sinteza ogranichennykh upravlenii v zadache upravlyaemosti”, Mat. sb., 109(151):4 (1979), 582–606 | MR | Zbl
[31] Lakeev A. V., Chagina O. M., “Metod funktsii Lyapunova v zadachakh sinteza upravlenii”, Metod funktsii Lyapunova v analize dinamiki sistem, Nauka, Novosibirsk, 1987, 272–280 | MR
[32] Heyting A., “Die Formalen Regeln der Intuitionistischen Logik”, Sitzungsber. preuss. Akad. Wiss. (Berlin), 1930, 42–56 | Zbl
[33] Kolmogoroff A. N., “Zur Deutung der Intuitionistischen Logik”, Math. Z., 35 (1932), 58–65 | DOI | MR | Zbl
[34] Takeuti G., Teoriya dokazatelstv, Mir, M., 1978, 412 pp. | MR