Automation methods for logical derivation and their application in the control of dynamic and intelligent systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 35-52
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is devoted to developing methods of knowledge representation and processing for automated solving of some classes of problems, including the search for logical derivations, synthesis of conditions for derivability, and action planning. The capabilities of the methods are illustrated by examples of problems of attaining target states in dynamic and intelligent systems.
Keywords: dynamic systems, intelligent systems, control theory, mathematical logic, artificial intelligence, controllability, Lyapunov functions.
@article{TIMM_2011_17_2_a3,
     author = {S. N. Vassilyev and G. M. Ponomarev},
     title = {Automation methods for logical derivation and their application in the control of dynamic and intelligent systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {35--52},
     year = {2011},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a3/}
}
TY  - JOUR
AU  - S. N. Vassilyev
AU  - G. M. Ponomarev
TI  - Automation methods for logical derivation and their application in the control of dynamic and intelligent systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 35
EP  - 52
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a3/
LA  - ru
ID  - TIMM_2011_17_2_a3
ER  - 
%0 Journal Article
%A S. N. Vassilyev
%A G. M. Ponomarev
%T Automation methods for logical derivation and their application in the control of dynamic and intelligent systems
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 35-52
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a3/
%G ru
%F TIMM_2011_17_2_a3
S. N. Vassilyev; G. M. Ponomarev. Automation methods for logical derivation and their application in the control of dynamic and intelligent systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 35-52. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a3/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[2] Osipov Yu. S., “Pakety programm: podkhod k resheniyu zadach pozitsionnogo upravleniya s nepolnoi informatsiei”, Uspekhi mat. nauk, 61:4(370) (2006), 25–76 | MR | Zbl

[3] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Fizmatlit, M., 1935, 320 pp.

[4] Chetaev N. G., Ustoichivost dvizheniya, Fizmatlit, M., 1965, 208 pp.

[5] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 212 pp. | MR

[6] Rumyantsev V. V., “Metod funktsii Lyapunova v teorii ustoichivosti”, Mekhanika v SSSR za 50 let. Obschaya i prikladnaya mekhanika, Sb. st., v. 1, Nauka, M., 1968, 7–66

[7] Lyndon R. C., “Properties preserved under homomorphism”, Pacific J. Math., 9 (1959), 143–154 | MR | Zbl

[8] Maltsev A. I., Algebraicheskie sistemy, Nauka, M., 1970, 392 pp. | MR

[9] Matrosov V. M., “Metod sravneniya v dinamike sistem. I”, Differents. uravneniya, 10:9 (1974), 1547–1559 ; “II”, 11:3 (1975), 403–417 | MR | Zbl | Zbl

[10] Matrosov V. M., Anapolskii L. Yu., Vasilev S. N., Metod sravneniya v matematicheskoi teorii sistem, Nauka, Novosibirsk, 1980, 480 pp.

[11] V. M. Matrosov [i dr.], Algoritmy vyvoda teorem metoda vektornykh funktsii Lyapunova, Nauka, Novosibirsk, 1981, 271 pp.

[12] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001, 384 pp.

[13] Vasilev S. N., “Metod reduktsii i kachestvennyi analiz dinamicheskikh sistem. I”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 1, 21–29; “II”, No 2, 5–17

[14] S. N. Vasilev [i dr.], Intellektnoe upravlenie dinamicheskimi sistemami, Fizmatlit, M., 2000, 352 pp.

[15] Robinson J. A., “A machine-oriented logic based on the resolution principle”, J. Assoc. Comput. Mach., 12 (1965), 23–41 | MR | Zbl

[16] Robinson J. A., “The generalised resolution principle”, Machine Intelligence, 3, ed. D. Michie, American Elsevier, New York, 1968, 77–94

[17] Maslov S. Yu., “Obratnyi metod ustanovleniya vyvodimosti v klassicheskom ischislenii predikatov”, Dokl. AN SSSR, 159:1 (1964), 17–20 | MR | Zbl

[18] Maslov S. Yu., “Obratnyi metod ustanovleniya vyvodimosti nepreneksnykh formul ischisleniya predikatov”, Dokl. AN SSSR, 172:1 (1967), 22–25 | MR | Zbl

[19] Rassel S., Norvig P., Iskusstvennyi intellekt: sovremennyi podkhod, Vilyams, M., 2006, 1408 pp.

[20] Riazanov A., Voronkov A., “Limited resource strategy in resolution theorem proving”, J. Symbolic Comput., 36:1–2 (2003), 101–115 | DOI | MR | Zbl

[21] Kalman J. A., Automated reasoning with Otter, Rinton Press, Princeton–New York, 2001, 536 pp. | MR | Zbl

[22] Kowalski R., “Predicate logic as a programming language”, Proc. IFIP-74 Congress, 1974, 569–574 | MR | Zbl

[23] Ershov Yu. L., “$\Sigma$-opredelimost na dopustimykh mnozhestvakh”, Dokl. AN SSSR, 285:4 (1985), 792–794 | MR

[24] Goncharov S. S., Sviridenko D. I., “$\Sigma$-programmirovanie”, Vychisl. sistemy, 107, 1985, 3–29 | MR | Zbl

[25] Vasilev S. N., “Metod sinteza uslovii vyvodimosti khornovskikh i nekotorykh drugikh formul”, Sib. mat. zhurn., 38:5 (1997), 1034–1046 | MR | Zbl

[26] Ershov Yu. L., Palyutin E. A., Matematicheskaya logika, Nauka, M., 1979, 320 pp. | MR

[27] S. Ferilli [et al.], “A complete subsumption algorithm”, Advances in Artificial Intelligence, Proc. 6th Congress of the Italian Association for Artificial Intelligence, eds. A. Cappelli, F. Turini, 2003, 1–13 | Zbl

[28] Chang C.-L., Lee R. C.-T., Symbolic logic and mechanical theorem proving, Acad. Press, New York–San Francisco–London, 1973 | MR | Zbl

[29] Vasilev S. N., Nekotorye voprosy matematicheskoi teorii sistem, dis. $\dots$ kand. fiz.-mat. nauk, Irkutsk, 1976, 133 pp.

[30] Korobov V. I., “Obschii podkhod k resheniyu zadachi sinteza ogranichennykh upravlenii v zadache upravlyaemosti”, Mat. sb., 109(151):4 (1979), 582–606 | MR | Zbl

[31] Lakeev A. V., Chagina O. M., “Metod funktsii Lyapunova v zadachakh sinteza upravlenii”, Metod funktsii Lyapunova v analize dinamiki sistem, Nauka, Novosibirsk, 1987, 272–280 | MR

[32] Heyting A., “Die Formalen Regeln der Intuitionistischen Logik”, Sitzungsber. preuss. Akad. Wiss. (Berlin), 1930, 42–56 | Zbl

[33] Kolmogoroff A. N., “Zur Deutung der Intuitionistischen Logik”, Math. Z., 35 (1932), 58–65 | DOI | MR | Zbl

[34] Takeuti G., Teoriya dokazatelstv, Mir, M., 1978, 412 pp. | MR