Optimal growth in a two-sector economy facing an expected random shock
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 271-299
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We develop an optimal growth model of an open economy that uses both an old (“dirty” or “polluting”) technology and a new (“clean”) technology simultaneously. A planner of the economy expects the occurrence of a random shock that increases sharply abatement costs in the dirty sector. Assuming that the probability of an exogenous environmental shock is distributed according to the exponential law, we use Pontryagins maximum principle to find the optimal investment and consumption policies for the economy.
Keywords: dynamic optimization, optimal control, Pontryagin's maximum principle, endogenous growth, climate change, random shock, government policy, technological development.
@article{TIMM_2011_17_2_a21,
     author = {Sergey Aseev and Konstantin Besov and Simon-Erik Ollus and Tapio Palokangas},
     title = {Optimal growth in a~two-sector economy facing an expected random shock},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {271--299},
     year = {2011},
     volume = {17},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a21/}
}
TY  - JOUR
AU  - Sergey Aseev
AU  - Konstantin Besov
AU  - Simon-Erik Ollus
AU  - Tapio Palokangas
TI  - Optimal growth in a two-sector economy facing an expected random shock
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 271
EP  - 299
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a21/
LA  - en
ID  - TIMM_2011_17_2_a21
ER  - 
%0 Journal Article
%A Sergey Aseev
%A Konstantin Besov
%A Simon-Erik Ollus
%A Tapio Palokangas
%T Optimal growth in a two-sector economy facing an expected random shock
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 271-299
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a21/
%G en
%F TIMM_2011_17_2_a21
Sergey Aseev; Konstantin Besov; Simon-Erik Ollus; Tapio Palokangas. Optimal growth in a two-sector economy facing an expected random shock. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 271-299. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a21/

[1] Aghion P., Howitt P., Endogenous growth theory, MIT Press, Cambridge, MA, 1998, 694 pp.

[2] Arnold V. I., Supplementary chapters to the theory of ordinary differential equations, Nauka, Moscow, 1978, 304 pp. (in Russian) | MR

[3] Aseev S., Besov K., Ollus S.-E., Palokangas T., “Optimal economic growth with a random environmental shock”, Dynamic Systems, Economic Growth, and the Environment, Dynamic Modeling and Econometrics in Economics and Finance, 12, eds. J. C. Cuaresma, T. Palokangas, A. Tarasyev, Springer, Berlin, 2010, 109–137 | DOI

[4] Aseev S. M., Kryazhimskii A. V., “The Pontryagin maximum principle and optimal economic growth problems”, Proc. Steklov Inst. Math., 257, no. 1, 2007, 1–255 | DOI | MR | Zbl

[5] Barro R. J., Sala-i-Martin X., Economic growth, McGraw Hill, New York, 1995, 539 pp.

[6] Gabasov R., Kirillova F. M., Singular optimal control, Plenum, New York, 1982, 323 pp.

[7] Gnedenko B. V., Theory of probability, Gordon and Breach, Newark–New York, 1997, 497 pp. | Zbl

[8] Hartman P., Ordinary differential equations, J. Wiley Sons, New York, 1964, 612 pp. | MR | Zbl

[9] Pontryagin L. S., Boltyanski V. G, Gamkrelidze R. V., Mishchenko E. F., The mathematical theory of optimal processes, Pergamon Press, Oxford, 1964, 340 pp. | MR | Zbl

[10] Wëalde K., “The economic determinants of technology shocks in real business cycle model”, J. Economic Dynamics and Control, 27 (2002), 1–28 | DOI | MR

[11] Wëalde K., “Capital accumulation in a growth model with creative destruction”, Stochastic Economic Dynamics, eds. B. S. Jensen, T. Palokangas, Cph. Bus. Sch. Press, Frederiksberg, 2007, 393–422 | MR