On linear conflict-controlled processes with fractional derivatives
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 256-270
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A control problem is considered for quasilinear processes with fractional derivatives under counteraction. Hilfer fractional derivatives are studied, which, in particular, include the classical Riemann–Liouville fractional derivatives and Caputo regularized derivatives. A representation for solutions of such systems is presented, which allows to obtain, using the method of resolving functions, a guaranteed result for the approach of a trajectory to a given target set. Qualitative results are illustrated by an example with the Bagley–Torvik equation, which describes damped oscillations with fractional damping, and by a game problem with the equation of fractional relaxation.
Keywords: game problem, fractional derivative, set-valued mapping, oscillatory process, fractional relaxation.
@article{TIMM_2011_17_2_a20,
     author = {A. A. Chikrii and I. I. Matichin},
     title = {On linear conflict-controlled processes with fractional derivatives},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {256--270},
     year = {2011},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a20/}
}
TY  - JOUR
AU  - A. A. Chikrii
AU  - I. I. Matichin
TI  - On linear conflict-controlled processes with fractional derivatives
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 256
EP  - 270
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a20/
LA  - ru
ID  - TIMM_2011_17_2_a20
ER  - 
%0 Journal Article
%A A. A. Chikrii
%A I. I. Matichin
%T On linear conflict-controlled processes with fractional derivatives
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 256-270
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a20/
%G ru
%F TIMM_2011_17_2_a20
A. A. Chikrii; I. I. Matichin. On linear conflict-controlled processes with fractional derivatives. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 256-270. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a20/

[1] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 455 pp. | MR | Zbl

[3] Pontryagin L. S., Izbrannye nauchnye trudy, v 3 t., v. 2, Differentsialnye uravneniya. Teoriya operatorov. Optimalnoe upravlenie. Differentsialnye igry, Nauka, M., 1988, 576 pp. | MR

[4] Aizeks R., Differentsialnye igry, Mir, M., 1967, 480 pp. | MR

[5] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991, 216 pp. | MR | Zbl

[6] Chernousko F. L., Melikyan A. A., Igrovye zadachi upravleniya i poiska, Nauka, M., 1978, 270 pp. | MR

[7] Chikrii A. A., Conflict-controlled processes, Kluwer Acad. Publ., Boston–London–Dordrecht, 1997, 424 pp. | MR | Zbl

[8] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR | Zbl

[9] Nikolskii M. S., Pervyi pryamoi metod L. S. Pontryagina v differentsialnykh igrakh, Izd-vo MGU, M., 1984, 65 pp.

[10] Pshenichnyi B. N., Ostapenko V. V., Differentsialnye igry, Nauk. dumka, Kiev, 1992, 264 pp. | MR

[11] Grigorenko N. L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990, 198 pp.

[12] Blagodatskikh A. I., Petrov N. N., Konfliktnoe vzaimodeistvie grupp upravlyaemykh ob'ektov, Izd-vo Udmurt. un-ta, Izhevsk, 2009, 266 pp. | MR | Zbl

[13] Petrosyan L. A., Differentsialnye igry presledovaniya, Izd-vo LGU, L., 1977, 224 pp. | MR | Zbl

[14] Osipov Yu. S., Kryazhimskii A. V., Inverse problems for ordinary differential equations, Gordon Breach, Basel, 1994, 625 pp. | MR

[15] Osipov Yu. S., “Minimaksnoe pogloschenie v differentsialno-raznostnykh igrakh”, Dokl. AN SSSR, 203:1 (1972), 32–35 | MR | Zbl

[16] Krasovskii N. N., Osipov Yu. S., “Lineinye differentsialno-raznostnye igry”, Dokl. AN SSSR, 197:4 (1971), 777–780 | MR

[17] Kryazhimskii A. V., Osipov Yu. S., “Differentsialno-raznostnaya igra sblizheniya s funktsionalnym tselevym mnozhestvom”, Prikl. matematika i mekhanika, 37:1 (1973), 3–13 | MR | Zbl

[18] Maksimov V. I., “O suschestvovanii sedlovoi tochki v differentsialno-raznostnoi igre presledovaniya-ubeganiya”, Prikl. matematika i mekhanika, 42:1 (1978), 15–22 | MR | Zbl

[19] Kryazhimskii A. V., Maksimov V. I., “Priblizhenie v lineinykh differentsialno-raznostnykh igrakh”, Prikl. matematika i mekhanika, 42:2 (1978), 202–209 | MR

[20] Nikolskii M. S., “Lineinye differentsialnye igry presledovaniya pri nalichii zapazdyvaniya”, Dokl. AN SSSR, 197:5 (1971), 1018–1021

[21] Chikrii A. A., Chikrii G. Ts., “Gruppovoe presledovanie v differentsialno-raznostnykh igrakh”, Differentsialnye uravneniya, 20:5 (1984), 802–810 | MR

[22] Osipov Yu. S., “K teorii differentsialnykh igr v sistemakh s raspredelennymi parametrami”, Dokl. AN SSSR, 223:6 (1975), 1314–1317 | MR | Zbl

[23] Osipov Yu. S., “Pozitsionnoe upravlenie v parabolicheskikh sistemakh”, Prikl. matematika i mekhanika, 41:2 (1977), 195–201 | MR | Zbl

[24] Nikolskii M. S., “Ob upravlenii pri nalichii protivodeistviya”, Vestn. MGU. Ser. 1. Matematika i mekhanika, 1972, no. 1, 67–72 | MR

[25] Eidelman S. D., Chikrii A. A., Rurenko A. G., “Lineinye integro-differentsialnye igry”, Problemy upravleniya i informatiki, 1998, no. 2, 5–18 | MR

[26] Chikrii A. A., “Game dynamic problems for systems with fractional derivatives”, Pareto optimality, game theory and equilibria, Springer Optimization and Its Applications, 17, Springer, New York, 2008, 349–387 | MR | Zbl

[27] Chikrii A. A., “Optimization of game interaction of fractional-order controlled systems”, Optim. Methods Softw., 23:1 (2008), 39–72 | DOI | MR | Zbl

[28] Chikrii A. A., Matychyn I. I., “Game problems for fractional-order systems”, New trends in nanotechnology and fractional calculus applications, Springer, New York, 2010, 233–241 | MR | Zbl

[29] Chikrii A. A., Matichin I. I., “Igrovye zadachi dlya lineinykh sistem drobnogo poryadka”, Trudy Instituta matematiki i mekhaniki UrO RAN, 15, no. 3, 2009, 262–278

[30] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp. | MR | Zbl

[31] Caputo M., “Linear model of dissipation whose $q$ is almost frequency independent – II”, Geophys. J. R. Astr. Soc., 1967, no. 13, 529–539

[32] Podlubny I., Fractional differential equations, Acad. Press, San Diego, 1999, 368 pp. | MR | Zbl

[33] Miller K. S., Ross B., An introduction to the fractional calculus and fractional differential equations, Wiley Sons, New York, 1993, 384 pp. | MR

[34] Hilfer R., “Fractional time evolution”, Applications of fractional calculus in physics, World Sci. Publ., Singapore, 2000, 87–130 | MR | Zbl

[35] Bagley R., Torvik P., “On the appearance of the fractional derivative in the behavior of real materials”, J. Appl. Mech., 51 (1984), 294–298 | DOI | Zbl

[36] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhauser, Boston, 1990, 461 pp. | MR | Zbl

[37] Kobelev V. V., “Linear non-conservative systems with fractional damping and the derivatives of critical load parameter”, GAMM-Mitt., 30:2 (2007), 287–299 | DOI | MR | Zbl

[38] Drǎgǎnescu Gh. E., Cofan N., Rujan D. L., “Nonlinear vibrations of a nano-sized sensor with fractional damping”, J. Optoelectron. Adv. Mater., 7:2 (2005), 877–884

[39] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 832 pp. | MR

[40] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006, 540 pp. | MR | Zbl

[41] Hilfer R., “Experimental evidence for fractional time evolution in glass forming materials”, Chem. Phys., 284 (2002), 399–408 | DOI