Canonical approximations in task of optimal stabilization of autonomous systems with aftereffect
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 20-34
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Canonical approximations are used for building of approximate control in task of optimal stabilization of autonomous system with aftereffect. Riesz's integral representations are used for projection method implementation of finite dimension approximation. Defined their relation with coordinate representation of projectors.
Keywords: autonomous systems with aftereffect, optimal stabilization, projection method, canonical approximation.
@article{TIMM_2011_17_2_a2,
     author = {D. S. Bykov and Yu. F. Dolgii},
     title = {Canonical approximations in task of optimal stabilization of autonomous systems with aftereffect},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {20--34},
     year = {2011},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a2/}
}
TY  - JOUR
AU  - D. S. Bykov
AU  - Yu. F. Dolgii
TI  - Canonical approximations in task of optimal stabilization of autonomous systems with aftereffect
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 20
EP  - 34
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a2/
LA  - ru
ID  - TIMM_2011_17_2_a2
ER  - 
%0 Journal Article
%A D. S. Bykov
%A Yu. F. Dolgii
%T Canonical approximations in task of optimal stabilization of autonomous systems with aftereffect
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 20-34
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a2/
%G ru
%F TIMM_2011_17_2_a2
D. S. Bykov; Yu. F. Dolgii. Canonical approximations in task of optimal stabilization of autonomous systems with aftereffect. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 20-34. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a2/

[1] Krasovskii N. N., Osipov Yu. S., “O stabilizatsii dvizhenii upravlyaemogo ob'ekta s zapazdyvaniem v sisteme regulirovaniya”, Izv. AN SSSR. Tekhn. kibernetika, 1963, no. 6, 3–15 | MR | Zbl

[2] Osipov Yu. S., “O stabilizatsii upravlyaemykh sistem s zapazdyvaniem”, Differents. uravneniya, 1:5 (1965), 605–618 | MR | Zbl

[3] Markushin E. M., Shimanov S. N., “Priblizhennoe reshenie zadachi analiticheskogo regulyatora dlya sistem s zapazdyvaniem”, Differents. uravneniya, 2:8 (1966), 1018–1026 | Zbl

[4] Markushin E. M., “Priblizhennoe reshenie zadachi analiticheskogo konstruirovaniya regulyatora dlya sistem s zapazdyvaniem”, Avtomatika i telemekhanika, 1968, no. 3, 13–20 | MR | Zbl

[5] Markushin E. M., Optimalnye sistemy avtomaticheskogo regulirovaniya s zapazdyvaniem po vremeni, Izd. Saratov. un-ta, Saratov, 1971, 92 pp.

[6] Pandolfi L., “Stabilization of neutral functional differential equations”, J. Optim. Theory Appl., 20:2 (1976), 191–204 | DOI | MR | Zbl

[7] Pandolfi L., “Canonical realizations of systems with delays”, SIAM J. Control Optim., 21:4 (1983), 598–613 | DOI | MR | Zbl

[8] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959, 212 pp. | MR

[9] Phillips R. S., “Perturbation theory for semi-groups of linear operators”, Trans. Amer. Math. Soc., 74 (1953), 199–221 | DOI | MR

[10] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, Inostr. lit., M., 1962, 830 pp. | MR

[11] S. G. Krein (red.), Funktsionalnyi analiz, Nauka, M., 1972, 544 pp. | MR

[12] Bykov D. S., Dolgii Yu. F., “Approksimiruyuschie kharakteristicheskie uravneniya dlya avtonomnykh sistem differentsialnykh uravnenii s posledeistviem”, Izv. vuzov. Matematika, 2011, no. 1, 10–23

[13] Privalov I. I., Vvedenie v teoriyu funktsii kompleksnogo peremennogo, Nauka, M., 1960, 444 pp. | MR

[14] M. A. Krasnoselskii [i dr.], Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969, 456 pp. | MR

[15] Krasovskii N. N., “Problemy stabilizatsii upravlyaemykh dvizhenii”, Dopolnenie 4: I. G. Malkin, Teoriya ustoichivosti dvizheniya, Nauka, M., 1966, 475–515 | MR

[16] Shimanov S. N., “K teorii lineinykh differentsialnykh uravnenii s posledeistviem”, Differentsialnye uravneniya, 1:1 (1965), 102–116 | Zbl

[17] Ginzburg Yu. P., Iokhvidov I. S., “Issledovaniya po geometrii beskonechnomernykh prostranstv s bilineinoi metrikoi”, Uspekhi mat. nauk, 17:4 (1962), 3–56 | MR | Zbl

[18] Azizov T. A., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstve s indefinitnoi metrikoi, Nauka, M., 1986, 352 pp. | MR

[19] Ikramov X. D., Chislennoe reshenie matrichnykh uravnenii, Nauka, M., 1984, 192 pp. | MR | Zbl