Optimal motion of a~multilink system in a~resistive medium
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 240-255

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the motion in a resistive medium of a mechanical system consisting of a main body and one or two links attached to it by means of cylindrical joints. The motion is controlled through high-frequency periodic oscillations of the links. For this system, an equation of motion is deduced and the average velocity is estimated under certain assumptions. This velocity is positive if the angular velocity of diverting the attached links is less than the angular velocity of bringing them to the axis of the body. An optimal control problem of maximizing the average velocity is formulated and solved. An example is given.
Keywords: optimal control, mechanical system, multilink system, method of averaging, biomechanics.
Mots-clés : mobile robots
@article{TIMM_2011_17_2_a19,
     author = {F. L. Chernous'ko},
     title = {Optimal motion of a~multilink system in a~resistive medium},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {240--255},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a19/}
}
TY  - JOUR
AU  - F. L. Chernous'ko
TI  - Optimal motion of a~multilink system in a~resistive medium
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 240
EP  - 255
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a19/
LA  - ru
ID  - TIMM_2011_17_2_a19
ER  - 
%0 Journal Article
%A F. L. Chernous'ko
%T Optimal motion of a~multilink system in a~resistive medium
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 240-255
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a19/
%G ru
%F TIMM_2011_17_2_a19
F. L. Chernous'ko. Optimal motion of a~multilink system in a~resistive medium. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 240-255. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a19/