Optimal motion of a multilink system in a resistive medium
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 240-255
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the motion in a resistive medium of a mechanical system consisting of a main body and one or two links attached to it by means of cylindrical joints. The motion is controlled through high-frequency periodic oscillations of the links. For this system, an equation of motion is deduced and the average velocity is estimated under certain assumptions. This velocity is positive if the angular velocity of diverting the attached links is less than the angular velocity of bringing them to the axis of the body. An optimal control problem of maximizing the average velocity is formulated and solved. An example is given.
Keywords: optimal control, mechanical system, multilink system, method of averaging, biomechanics.
Mots-clés : mobile robots
@article{TIMM_2011_17_2_a19,
     author = {F. L. Chernous'ko},
     title = {Optimal motion of a~multilink system in a~resistive medium},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {240--255},
     year = {2011},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a19/}
}
TY  - JOUR
AU  - F. L. Chernous'ko
TI  - Optimal motion of a multilink system in a resistive medium
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 240
EP  - 255
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a19/
LA  - ru
ID  - TIMM_2011_17_2_a19
ER  - 
%0 Journal Article
%A F. L. Chernous'ko
%T Optimal motion of a multilink system in a resistive medium
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 240-255
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a19/
%G ru
%F TIMM_2011_17_2_a19
F. L. Chernous'ko. Optimal motion of a multilink system in a resistive medium. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 240-255. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a19/

[1] Gray J., Animal locomotion, Norton, New York, 1968, 479 pp.

[2] Lighthill J., Mathematical biofluiddynamics, SIAM, Philadelphia, 1975, 281 pp. | MR | Zbl

[3] Blake R. W., Fish locomotion, Cambridge University Press, Cambridge, 1983, 208 pp. | Zbl

[4] Hirose S., Biologically inspired robots: snake-like locomotors and manipulators, Oxford University Press, Oxford, 1993, 220 pp.

[5] Terada Y., Yamamoto I., “Development of oscillating fin propulsion system and its application to ships and artificial fish”, Mitsubishi Heavy Industries Tech. Review, 36 (1999), 84–88

[6] Mason R., Burdick J., “Construction and modelling of a carangiform robotic fish”, Experimental Robotics VI, Lecture Notes in Control and Information Sciences, 250, 2000, 235–242

[7] Morgansen K. A., Duindam V., Mason R. J., Burdick J. W., Murray R. M., “Nonlinear control methods for planar carangiform robot fish locomotion”, Proc. 2001 IEEE International Conference on Robotics and Automation, 2001, 427–434

[8] Colgate J. E., Lynch K. M., “Mechanics and control of swimming: a review”, IEEE J. of Oceanic Engineering, 29 (2004), 660–673 | DOI

[9] RoboTuna, From Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/RoboTuna#References

[10] Chernousko F. L., “Dvizhenie mnogozvennika po gorizontalnoi ploskosti”, Prikl. matematika i mekhanika, 64:1 (2000), 8–18 | MR

[11] Chernousko F. L., “Volnoobraznye dvizheniya mnogozvennika po gorizontalnoi ploskosti”, Prikl. matematika i mekhanika, 64:4 (2000), 518–531 | MR

[12] Chernousko F. L., “Snake-like locomotion of multilink mechanisms”, J. Vibration and Control, 9:1–2 (2003), 235–256 | MR | Zbl

[13] Chernousko F. L., “Dvizhenie mmnogozvennikov po ploskosti”, Problemy mekhaniki, Sb. st. k 90-letiyu so dnya rozhdeniya A. Yu. Ishlinskogo, Fizmatlit, Moskva, 2003, 783–802

[14] Chernousko F. L., “O peremeschenii tela v zhidkosti za schet kolebanii prisoedinennogo zvena”, Dokl. RAN, 431:1 (2010), 46–49 | MR

[15] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1963, 410 pp. | MR

[16] L. S. Pontryagin [i dr.], Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1983, 393 pp. | MR | Zbl