One representation of the results of action of approximate solutions in a problem with constraints of asymptotic nature
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 225-239
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider an abstract attainability problem with constraints of asymptotic nature defined in the form of a nonempty family of subsets in the space of usual solutions. Various variants of implementing asymptotic effects are considered (convergence in a topological space, cycles, and so on). A rather general method is suggested for presenting the results of action of approximate solutions; this method generalizes constructions based on sequences in the space of usual solutions.
Keywords: attraction set, ultrafilter.
Mots-clés : net
@article{TIMM_2011_17_2_a18,
     author = {A. G. Chentsov},
     title = {One representation of the results of action of approximate solutions in a~problem with constraints of asymptotic nature},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {225--239},
     year = {2011},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a18/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - One representation of the results of action of approximate solutions in a problem with constraints of asymptotic nature
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 225
EP  - 239
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a18/
LA  - ru
ID  - TIMM_2011_17_2_a18
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T One representation of the results of action of approximate solutions in a problem with constraints of asymptotic nature
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 225-239
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a18/
%G ru
%F TIMM_2011_17_2_a18
A. G. Chentsov. One representation of the results of action of approximate solutions in a problem with constraints of asymptotic nature. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 225-239. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a18/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[2] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1970, 488 pp. | MR

[3] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR

[4] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[5] Daffin R. Dzh., “Beskonechnye programmy”, Lineinye neravenstva i smezhnye voprosy, Inostr. lit., M., 1959, 263–267

[6] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 351 pp. | MR

[7] Chentsov A. G., “Nesekventsialnye priblizhennye resheniya v abstraktnykh zadachakh o dostizhimosti”, Trudy Instituta matematiki i mekhaniki UrO RAN, 12, no. 1, Ekaterinburg, 2006, 216–241 | MR | Zbl

[8] Chentsov A. G., “Rasshireniya abstraktnykh zadach o dostizhimosti: nesekventsialnaya versiya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 13, no. 2, 2007, 184–217

[9] C̆ech E., Topological spaces, Academia, Prague, 1966, 893 pp. | MR | Zbl

[10] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[11] Chentsov A. G., Asymptotic attainability, Kluwer Academic Publishers, Dordrecht–Boston–London, 1997, 322 pp. | MR | Zbl

[12] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl

[13] Burbaki N., Obschaya topologiya, Nauka, M., 1968, 272 pp. | MR

[14] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981, 431 pp. | MR

[15] Chentsov A. G., Elementy konechno-additivnoi teorii mery, v. II, Izd-vo UGTU-UPI, Ekaterinburg, 2010, 541 pp.

[16] Chentsov A. G., Finitely additive measures and relaxations of extremal problems, Plenum Publishing Corporation, New York–London–Moscow, 1996, 244 pp. | MR | Zbl