Estimate of the stability defect for a positional absorption set subjected to discriminant transformations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 209-224
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study bordering “paths”, i.e., sets in the position space of an approach-evasion differential game that contain the positional absorption set. The positional absorption set provides an exact (classical) solution of the game. At the same time, its border is nonsmooth, which complicates the construction of this set. On the contrary, a set different from the positional absorption set may not provide an exact solution of the game but can be constructed with relative ease, for example, with the help of analytical formulas. There may be other arguments for using “paths” for solving a game. For example, the smoothness of the boundary of a chosen “path” allows one to efficiently form the players' control procedures guaranteeing the solution of a game problem in the “soft” setting by taking the motion of a conflict-controlled system to a neighborhood of the target set. In this paper, we propose a procedure for smoothing a set in a part of variables; the procedure is based on discriminant transformations. We study the stability defect caused by changing the positional absorption set of a differential game by a set-“path” with boundary that is smooth in the space variables. An estimate for the stability defect of the constructed set is presented. The results are illustrated by the example of a known differential game.
Keywords: approach game problem, control, conflict-controlled system, stable bridge, Hamiltonian.
@article{TIMM_2011_17_2_a17,
     author = {V. N. Ushakov and A. A. Uspenskii and A. G. Malev},
     title = {Estimate of the stability defect for a~positional absorption set subjected to discriminant transformations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {209--224},
     year = {2011},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a17/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. A. Uspenskii
AU  - A. G. Malev
TI  - Estimate of the stability defect for a positional absorption set subjected to discriminant transformations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 209
EP  - 224
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a17/
LA  - ru
ID  - TIMM_2011_17_2_a17
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. A. Uspenskii
%A A. G. Malev
%T Estimate of the stability defect for a positional absorption set subjected to discriminant transformations
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 209-224
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a17/
%G ru
%F TIMM_2011_17_2_a17
V. N. Ushakov; A. A. Uspenskii; A. G. Malev. Estimate of the stability defect for a positional absorption set subjected to discriminant transformations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 209-224. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a17/

[1] Krasovskii N. N., “Igrovye zadachi dinamiki. I”, Izv. AN SSSR. Tekhn. kibernetika, 1969, no. 5, 3–12 | MR

[2] Krasovskii N. N., Subbotin A. I., “Smeshannoe upravlenie v differentsialnoi igre. I”, Dokl. AN SSSR, 188:4 (1969), 745–747 | MR

[3] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[4] Krasovskii N. N., Subbotin A. I., “O strukture differentsialnykh igr”, Dokl. AN SSSR, 190:3 (1970), 523–526 | MR

[5] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[6] Krasovskii N. N., “K zadache unifikatsii differentsialnykh igr”, Dokl. AN SSSR, 226:6 (1976), 1260–1263 | MR

[7] Krasovskii N. N., “Unifikatsiya differentsialnykh igr”, Igrovye zadachi upravleniya, Trudy Instituta matematiki i mekhaniki, 24, UNTs AN SSSR, Sverdlovsk, 1977, 32–45 | MR

[8] Guseinov H. G., Subbotin A. I., Ushakov V. N., “Derivatives for multivalued mappings with applications to game-theoretical problems of control”, Problems Control Inform. Theory, 14:6 (1985), 405–419 | MR

[9] Ushakov V. N., “K zadache postroeniya stabilnykh mostov v differentsialnoi igre sblizheniya-ukloneniya”, Izv. AN SSSR. Tekhn. kibernetika, 1980, no. 4, 29–36 | MR | Zbl

[10] Tarasev A. M., Ushakov V. N., O postroenii stabilnykh mostov v minimaksnoi igre sblizheniya-ukloneniya, Dep. v VINITI, No 2454-83, Sverdlovsk, 1983, 61 pp.

[11] Tarasev A. M., Ushakov V. N., Khripunov A. P., “Ob odnom vychislitelnom algoritme resheniya igrovykh zadach upravleniya”, Prikl. matematika i mekhanika, 51:2 (1987), 216–222 | MR

[12] Ushakov V. N., Taras'ev A. M., Tokmantsev T. B., Uspenskii A. A., “On procedures for constructing solutions in differential games on a finite interval of time”, J. Math. Sci., 139:5 (2006), 6954–6975 | DOI | MR | Zbl

[13] Tarasev A. M., O postroenii funktsii tseny v odnoi neregulyarnoi differentsialnoi igre s fiksirovannym momentom okonchaniya, Dep. v VINITI, No 2455-83, Sverdlovsk, 1983, 43 pp.

[14] Ushakov V. N., Latushkin Ya. A., “Defekt stabilnosti mnozhestv v igrovykh zadachakh upravleniya”, Trudy Instituta matematiki i mekhaniki UrO RAN, 12, no. 2, 2006, 178–194 | MR | Zbl

[15] Ushakov V. N., Brykalov S. A., Latushkin Y. A., “Stable and unstanble sets in problems of conflict control”, Funct. Diff. Eq., 15:3 (2008), 309–338 | MR | Zbl

[16] Ushakov V. N., Malëv A. G., “K voprosu o defekte stabilnosti mnozhestv v igrovoi zadache o sblizhenii”, Trudy Instituta matematiki i mekhaniki UrO RAN, 16, no. 1, 2010, 199–222

[17] Brus Dzh., Dzhiblin P., Krivye i osobennosti, Mir, M., 1988, 262 pp. | MR

[18] Uspenskii A. A., Lebedev P. D., “Geometriya i asimptotika volnovykh frontov”, Izv. vyssh. ucheb. zavedenii, 2008, no. 3, 27–37 | MR | Zbl

[19] Ushakov V. N., Uspenskii A. A., Lebedev P. D., “Postroenie minimaksnogo resheniya uravneniya tipa eikonala”, Trudy Instituta matematiki i mekhaniki UrO RAN, 14, no. 2, 2008, 182–191 | Zbl

[20] Uspenskii A. A., Lebedev P. D., “Postroenie funktsii optimalnogo rezultata v zadache bystrodeistviya na osnove mnozhestva simmetrii”, Avtomatika i telemekhanika, 2009, no. 7, 50–57 | MR | Zbl

[21] Pontryagin L. S., “O lineinykh differentsialnykh igrakh. II”, Dokl. AN SSSR, 175:4 (1967), 764–766 | Zbl

[22] Osipov Yu. S., “Alternativa v differentsialno-raznostnoi igre”, Dokl. AN SSSR, 197:5 (1971), 619–624 | Zbl

[23] Alekseichik M. I., “Dalneishaya formalizatsiya osnovnykh elementov antagonisticheskoi differentsialnoi igry”, Matematicheskii analiz i ego prilozheniya: sb. st., 7, Rostov-na-Donu, 1975, 191–199 | Zbl

[24] Chentsov A. G., “Ob igrovoi zadache sblizheniya v zadannyi moment vremeni”, Mat. sb., 99(141):3 (1976), 394–420 | MR | Zbl

[25] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR | Zbl

[26] Subbotin A. I., Subbotina N. N., “Funktsiya optimalnogo rezultata v zadache upravleniya”, Dokl. AN SSSR, 266:2 (1982), 294–299 | MR | Zbl

[27] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii, Institut kompyuternykh tekhnologii, M.–Izhevsk, 2003, 336 pp.

[28] Kurzhanski A. B., Variya P., “Dynamic optimization for reachibility problems”, J. Optim. Theor. Appl., 108:2 (2001), 227–251 | DOI | MR | Zbl

[29] Kurzhanskii A. B., “Printsip sravneniya dlya uravnenii tipa Gamiltona–Yakobi v teorii upravleniya”, Trudy Instituta matematiki i mekhaniki UrO RAN, 12, no. 1, 2006, 173–183 | MR | Zbl

[30] Osipov Yu. S., Kryazhimski A. V., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, London, 1995, 625 pp. | MR | Zbl

[31] Ukhobotov V. I., “Analiticheskaya skhema postroeniya stabilnykh mostov dlya operatorov programmnogo pogloscheniya s invariantnymi semeistvami mnozhestv”, Izvestiya Instituta matematiki i informatiki Udmurskogo universitetata, 2005, no. 2(32), 23–34

[32] Arnold V. I., Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996, 334 pp. | MR

[33] Rashevskii P. K., Kurs differentsialnoi geometrii, Editorial URSS, M., 2003, 432 pp.