On a solution to the Cauchy problem for the Hamilton–Jacobi equation with state constraints
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 191-208
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Cauchy problem for the Hamilton–Jacobi equation, which appears in molecular biology for the Crow–Kimura model of molecular evolution, is considered. The notion of a continuous generalized solution of this problem with state constraints is introduced on the basis of the viscosity (and/or minimax) approach. A construction of the generalized solution of the problem is proposed, which uses the value function in an auxiliary optimal control problem with a given target set. It is shown that the generalized solution in the considered problem is not unique. The research is based on the generalized method of characteristics for the Hamilton–Jacobi equations in the Dirichlet problem.
Keywords: Hamilton–Jacobi equations, method of characteristics, viscosity solutions, minimax solutions, optimal control, value function.
@article{TIMM_2011_17_2_a16,
     author = {N. N. Subbotina and L. G. Shagalova},
     title = {On a~solution to the {Cauchy} problem for the {Hamilton{\textendash}Jacobi} equation with state constraints},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {191--208},
     year = {2011},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a16/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - L. G. Shagalova
TI  - On a solution to the Cauchy problem for the Hamilton–Jacobi equation with state constraints
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2011
SP  - 191
EP  - 208
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a16/
LA  - ru
ID  - TIMM_2011_17_2_a16
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A L. G. Shagalova
%T On a solution to the Cauchy problem for the Hamilton–Jacobi equation with state constraints
%J Trudy Instituta matematiki i mehaniki
%D 2011
%P 191-208
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a16/
%G ru
%F TIMM_2011_17_2_a16
N. N. Subbotina; L. G. Shagalova. On a solution to the Cauchy problem for the Hamilton–Jacobi equation with state constraints. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 17 (2011) no. 2, pp. 191-208. http://geodesic.mathdoc.fr/item/TIMM_2011_17_2_a16/

[1] Bellman R., Dinamicheskoe programmirovanie, IL, M., 1960, 400 pp. | MR

[2] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[3] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR | Zbl

[4] Kruzhkov S. N., “Obobschennye resheniya nelineinykh uravnenii pervogo poryadka so mnogimi nezavisimymi peremennymi, I”, Mat. sb., 70(112):3 (1966), 394–415 | MR | Zbl

[5] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 832 pp. | MR

[6] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961, 392 pp. | MR | Zbl

[7] Melikyan A. A., “Granichnye singulyarnye kharakteristiki uravneniya Gamiltona–Yakobi”, Prikl. matematika i mekhanika, 74:2 (2010), 202–215 | MR

[8] Milyutin A. A., Dmitruk A. V., Osmolovskii N. P., Printsip maksimuma v optimalnom upravlenii, Izd-vo MGU, M., 2004, 168 pp.

[9] Pontryagin L. S., Obyknovennye differentsialnye uravneniya, Nauka, M., 1974, 332 pp. | MR

[10] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 472 pp.

[11] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991, 216 pp. | MR | Zbl

[12] Bardi M., Capuzzo-Dolcetta I., Optimal control and viscosity solutions of Hamilton–Jacobi–Bellman equations, Birkhauser, Boston, 1997, 570 pp. | MR | Zbl

[13] Capuzzo-Dolcetta I., Lions P.-L., “Hamilton–Jacobi equations with state constraints”, Trans. Amer. Math. Soc., 318:2 (1990), 643–683 | DOI | MR | Zbl

[14] Crandall M. G., Lions P.-L., “Viscosity solutions of Hamilton-Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[15] Crandall M. G., Newcomb R., “Viscosity solutions of Hamilton-Jacobi equations at the boundary”, Proc. of the Amer. Math. Soc., 94:2 (1985), 283–290 | DOI | MR | Zbl

[16] Saakian D. B., Rozanova O., Akmetzhanov A., “Dynamics of the Eigen and the Crow-Kimuramodels for molecular evolution”, Phys. Rev. E – Statistical, Nonlinear, and Soft Matter Physics, 78:4 (2008), 041908, 6 pp. | DOI | MR

[17] Subbotin A. I., Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspective, Birkhauser, Boston, 1995, 312 pp. | MR

[18] Subbotina N. N., “The method of characteristics for Hamilton–Jacobi equation and its applications in dynamical optimization”, J. Math. Sci., 135:3 (2006), 2955–3091 | DOI | MR